Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils.

Prabhat Tiwari, David Brooks, Erika R Geisbrecht
{"title":"Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils.","authors":"Prabhat Tiwari, David Brooks, Erika R Geisbrecht","doi":"10.1002/cm.21999","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere. Drosophila muscles are similar to vertebrate muscles in composition and they share a similar mechanism of development. Drosophila NUAK (NUAK) is the homolog of NUAK1 and NUAK2 in vertebrates. NUAK belongs to the family of AMP-activated protein kinases (AMPKs), a group of proteins with broad and overlapping cellular targets. Here we confirm that NUAK dynamically modulates larval muscle sarcomere size as upregulation of NUAK produces longer sarcomeres, including increased thin filament lengths. Furthermore, NUAK overexpression results in aberrant myofibers above the nuclei plane, upregulation of Formin-like (Frl), and an increase in newly synthesized proteins at sites consistent with actin filament assembly. Expression of constitutively-active Frl also produces aberrant myofibers similar to NUAK overexpression. These results taken together strongly suggest a functional link between NUAK and Frl in myofibril formation in an in vivo setting.</p>","PeriodicalId":72766,"journal":{"name":"Cytoskeleton (Hoboken, N.J.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytoskeleton (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cm.21999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle development and maintenance is central to the normal functioning of animals. Muscle tissues exhibit high levels of activity and require the dynamic turnover of proteins. An actomyosin scaffold functions with additional proteins comprising the basic contractile subunit of striated muscle, known as the sarcomere. Drosophila muscles are similar to vertebrate muscles in composition and they share a similar mechanism of development. Drosophila NUAK (NUAK) is the homolog of NUAK1 and NUAK2 in vertebrates. NUAK belongs to the family of AMP-activated protein kinases (AMPKs), a group of proteins with broad and overlapping cellular targets. Here we confirm that NUAK dynamically modulates larval muscle sarcomere size as upregulation of NUAK produces longer sarcomeres, including increased thin filament lengths. Furthermore, NUAK overexpression results in aberrant myofibers above the nuclei plane, upregulation of Formin-like (Frl), and an increase in newly synthesized proteins at sites consistent with actin filament assembly. Expression of constitutively-active Frl also produces aberrant myofibers similar to NUAK overexpression. These results taken together strongly suggest a functional link between NUAK and Frl in myofibril formation in an in vivo setting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Picture of the Month by E. S. Klimenko. Introduction to the Special Issue "Actin-Binding Proteins in Diseases". Overexpression of Drosophila NUAK or Constitutively-Active Formin-Like Promotes the Formation of Aberrant Myofibrils. Cytoskeleton Spotlight: Yuan Ren, PhD. Actin Cytoskeleton at the Synapse: An Alzheimer's Disease Perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1