Macrophage activity modulation via synergistic effect of a porous substrate and low-field laser therapy.

Acta of bioengineering and biomechanics Pub Date : 2025-01-28 Print Date: 2024-06-01 DOI:10.37190/abb-02451-2024-02
Aleksandra Matuła, Amelia Lizak, Ewa Stodolak-Zych, Beata Stenka, Joanna Homa, Aneta Bac, Aneta Teległów, Anna Ścisłowska-Czarnecka
{"title":"Macrophage activity modulation via synergistic effect of a porous substrate and low-field laser therapy.","authors":"Aleksandra Matuła, Amelia Lizak, Ewa Stodolak-Zych, Beata Stenka, Joanna Homa, Aneta Bac, Aneta Teległów, Anna Ścisłowska-Czarnecka","doi":"10.37190/abb-02451-2024-02","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. <i>Methods</i>: The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt. The reference material was pure polymer membrane. RAW 264.7 were deposited on the material and then irradiated with a laser with a wavelength of 808 nm, a power of 100 mW, an irradiation dose of 2 J/cm2/cell well, applied continuously (C), (100/2/C) or pulsed (I), (100/2/I). <i>Results</i>: Macrophage irradiation resulted in an increase in their adhesion. Modifying the PCL membranes with rosmarinic acid had no effect on cell viability on day 3 of the cell culture. Irradiation of macrophages cultured on PCL-RA material increased their viability. Irradiation of macrophages cultured on PCL-RA material decreased macrophage secretion of NO and protein and the increase in TNF and MCP-1 secretion was only transient on day 3 of culture. <i>Conclusions</i>: Macrophage irradiation had a positive effect on macrophage attachment. Modification of PCL membranes with rosmarinic acid influenced the biological activity of macrophages. Culture of macrophages on rosmarinic acid-modified PCL membranes and simultaneous irradiation of LLLT cells resulted in anti-inflammatory effects.</p>","PeriodicalId":519996,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"26 2","pages":"159-170"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/abb-02451-2024-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The aim of this study was to investigate the effect of substrate - polycaprolactone (PCL)-based porous membrane modified with rosmarinic acid (RA), (PCL-RA) and to determine the optimal values of low field laser irradiation (LLLT) as stimulators of biological response of RAW 264.7 macrophages. Methods: The porous polymer membrane was obtained by the phase inversion method, the addition of rosmarinic acid was 1%wt. The reference material was pure polymer membrane. RAW 264.7 were deposited on the material and then irradiated with a laser with a wavelength of 808 nm, a power of 100 mW, an irradiation dose of 2 J/cm2/cell well, applied continuously (C), (100/2/C) or pulsed (I), (100/2/I). Results: Macrophage irradiation resulted in an increase in their adhesion. Modifying the PCL membranes with rosmarinic acid had no effect on cell viability on day 3 of the cell culture. Irradiation of macrophages cultured on PCL-RA material increased their viability. Irradiation of macrophages cultured on PCL-RA material decreased macrophage secretion of NO and protein and the increase in TNF and MCP-1 secretion was only transient on day 3 of culture. Conclusions: Macrophage irradiation had a positive effect on macrophage attachment. Modification of PCL membranes with rosmarinic acid influenced the biological activity of macrophages. Culture of macrophages on rosmarinic acid-modified PCL membranes and simultaneous irradiation of LLLT cells resulted in anti-inflammatory effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macrophage activity modulation via synergistic effect of a porous substrate and low-field laser therapy. The biomechanical implications of lacunar and perilacunar microarchitecture on microdamage accumulation in cortical bone. The effect of using walking poles on the spatiotemporal gait parameters in patients who underwent surgery for hip fractures. The impact of external perturbations on postural control. The impact of running experience and shoe longitudinal bending stiffness on lower extremity biomechanics: a cross-sectional study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1