Whole Blood DNA Methylation Analysis Reveals Epigenetic Changes Associated with ARSACS.

IF 2.7 3区 医学 Q3 NEUROSCIENCES Cerebellum Pub Date : 2025-01-24 DOI:10.1007/s12311-025-01791-5
Giulia De Riso, Valentina Naef, Devid Damiani, Stefano Doccini, Filippo M Santorelli, Daniele Galatolo
{"title":"Whole Blood DNA Methylation Analysis Reveals Epigenetic Changes Associated with ARSACS.","authors":"Giulia De Riso, Valentina Naef, Devid Damiani, Stefano Doccini, Filippo M Santorelli, Daniele Galatolo","doi":"10.1007/s12311-025-01791-5","DOIUrl":null,"url":null,"abstract":"<p><p>Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations. To investigate this issue, we recruited eight patients affected by ARSACS, four characterized by early onset of the disease and four with late onset. We performed Whole Genome Bisulfite Sequencing using DNA from peripheral blood to define the methylome of patients and compared them with a control group. Our analysis showed that patients with ARSACS exhibit an altered methylation pattern and that the observed differences exist also among affected individuals with different age of onset. Our study provides valuable insights for employing epigenetic biomarkers to assess the severity and progression of this disorder and propels further investigations into the role of epigenetic processes in ARSACS pathogenesis.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 2","pages":"36"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01791-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations. To investigate this issue, we recruited eight patients affected by ARSACS, four characterized by early onset of the disease and four with late onset. We performed Whole Genome Bisulfite Sequencing using DNA from peripheral blood to define the methylome of patients and compared them with a control group. Our analysis showed that patients with ARSACS exhibit an altered methylation pattern and that the observed differences exist also among affected individuals with different age of onset. Our study provides valuable insights for employing epigenetic biomarkers to assess the severity and progression of this disorder and propels further investigations into the role of epigenetic processes in ARSACS pathogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cerebellum
Cerebellum 医学-神经科学
CiteScore
6.40
自引率
14.30%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction. The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging. The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.
期刊最新文献
MRI Shrimp Sign and Parietooccipital Lesion in Progressive Multifocal Leukoencephalopathy. Cerebellar Alterations in Autism Spectrum Disorder: A Mini-Review. Estradiol Enhances Cerebellar Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission and Improves Motor Learning Through ER-β in Vivo in Mice. Differential Protective Effects of Edaravone in Cerebellar and Hippocampal Ischemic Injury Models. Radiomics-based Modelling Unveils Cerebellar Involvement in Parkinson's Disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1