Jens Dickmeiß, Yoshiyuki Henning, Sarah Stahlke, Thomas Weber, Carsten Theiss, Veronika Matschke
{"title":"Differential Protective Effects of Edaravone in Cerebellar and Hippocampal Ischemic Injury Models.","authors":"Jens Dickmeiß, Yoshiyuki Henning, Sarah Stahlke, Thomas Weber, Carsten Theiss, Veronika Matschke","doi":"10.1007/s12311-025-01804-3","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is a leading cause of mortality and disability, with cerebellar strokes posing severe complications such as herniation and brainstem compression. Edaravone, a radical scavenger known for reducing oxidative stress, has shown neuroprotective effects in cerebral strokes, but its impact on cerebellar strokes remains unclear. This study investigates Edaravone's protective properties in organotypic slice cultures of rat cerebellum and hippocampus, employing an oxygen-glucose deprivation (OGD) model to simulate ischemic stroke. The hippocampus served as comparative structure due to its high hypoxia sensitivity. Our results confirmed effective hypoxic induction with increases in HIF-1α and HIF-2α expression. Edaravone significantly reduced lactate dehydrogenase (LDH) levels, indicating diminished cellular damage, with cerebellar tissues showing greater vulnerability. Additionally, Edaravone reduced reactive oxygen species (ROS) in both tissues, though its efficacy may be limited by higher oxidative stress in cerebellar cultures. Seahorse XF analysis revealed that Edaravone preserved mitochondrial respiration and tissue integrity in cerebellar and hippocampal slice cultures. However, Edaravone was more effective in preserving mitochondrial respiration in hippocampal slices, suggesting that OGD-induced damage is more severe in cerebellar tissue. In conclusion, Edaravone demonstrates significant cell protective effects in both cerebellar and hippocampal tissues under OGD conditions, preserving tissue integrity and enhancing mitochondrial function in a tissue-dependent manner. These findings suggest Edaravone as a promising therapeutic candidate for cerebellar stroke. Further in vivo studies are required to assess its full clinical potential.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":"24 2","pages":"49"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11835913/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebellum","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12311-025-01804-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemic stroke is a leading cause of mortality and disability, with cerebellar strokes posing severe complications such as herniation and brainstem compression. Edaravone, a radical scavenger known for reducing oxidative stress, has shown neuroprotective effects in cerebral strokes, but its impact on cerebellar strokes remains unclear. This study investigates Edaravone's protective properties in organotypic slice cultures of rat cerebellum and hippocampus, employing an oxygen-glucose deprivation (OGD) model to simulate ischemic stroke. The hippocampus served as comparative structure due to its high hypoxia sensitivity. Our results confirmed effective hypoxic induction with increases in HIF-1α and HIF-2α expression. Edaravone significantly reduced lactate dehydrogenase (LDH) levels, indicating diminished cellular damage, with cerebellar tissues showing greater vulnerability. Additionally, Edaravone reduced reactive oxygen species (ROS) in both tissues, though its efficacy may be limited by higher oxidative stress in cerebellar cultures. Seahorse XF analysis revealed that Edaravone preserved mitochondrial respiration and tissue integrity in cerebellar and hippocampal slice cultures. However, Edaravone was more effective in preserving mitochondrial respiration in hippocampal slices, suggesting that OGD-induced damage is more severe in cerebellar tissue. In conclusion, Edaravone demonstrates significant cell protective effects in both cerebellar and hippocampal tissues under OGD conditions, preserving tissue integrity and enhancing mitochondrial function in a tissue-dependent manner. These findings suggest Edaravone as a promising therapeutic candidate for cerebellar stroke. Further in vivo studies are required to assess its full clinical potential.
期刊介绍:
Official publication of the Society for Research on the Cerebellum devoted to genetics of cerebellar ataxias, role of cerebellum in motor control and cognitive function, and amid an ageing population, diseases associated with cerebellar dysfunction.
The Cerebellum is a central source for the latest developments in fundamental neurosciences including molecular and cellular biology; behavioural neurosciences and neurochemistry; genetics; fundamental and clinical neurophysiology; neurology and neuropathology; cognition and neuroimaging.
The Cerebellum benefits neuroscientists in molecular and cellular biology; neurophysiologists; researchers in neurotransmission; neurologists; radiologists; paediatricians; neuropsychologists; students of neurology and psychiatry and others.