Molecular Therapeutics in Development to Treat Hyperlipoproteinemia.

IF 4.1 3区 医学 Q1 GENETICS & HEREDITY Molecular Diagnosis & Therapy Pub Date : 2025-01-28 DOI:10.1007/s40291-024-00768-0
Maud Ahmad, Robert A Hegele
{"title":"Molecular Therapeutics in Development to Treat Hyperlipoproteinemia.","authors":"Maud Ahmad, Robert A Hegele","doi":"10.1007/s40291-024-00768-0","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical endpoints caused by hyperlipoproteinemia include atherosclerotic cardiovascular disease and acute pancreatitis. Emerging lipid-lowering therapies targeting proprotein convertase subtilisin/kexin 9 (PCSK9), lipoprotein(a), apolipoprotein C-III, and angiopoietin-like protein 3 represent promising advances in the management of patients with hyperlipoproteinemia. These therapies offer novel approaches for lowering pathogenic lipid and lipoprotein species, particularly in patients with serious perturbations who are not adequately controlled with conventional treatments or who are unable to tolerate them. Molecular targets for these novel therapeutic agents were identified and validated through genetic epidemiology studies. Proprotein convertase subtilisin/kexin 9 inhibitors (e.g., monoclonal antibodies and small interfering RNA) have revolutionized hypercholesterolemia management by significantly reducing both low-density lipoprotein cholesterol levels and major cardiovascular events. Genome editing of PCSK9 promises to provide a potential cure for patients with familial hypercholesterolemia. Several investigational lipoprotein(a)-targeting therapies aim to reduce the risk of atherosclerotic cardiovascular disease and aortic valve disease, although definitive clinical endpoint studies remain to be completed. Inhibition of APOC3 messenger RNA expression by olezarsen and plozasiran significantly lowers plasma triglyceride levels and markedly reduces pancreatitis risk in patients with familial chylomicronemia syndrome. Finally, angiopoietin-like protein 3 inhibition by the monoclonal antibody evinacumab has transformed management of patients with homozygous familial hypercholesterolemia. Together, these novel agents expand the therapeutic cache, offering personalized lipid-lowering strategies for high-risk patients with hyperlipoproteinemia, improving clinical outcomes and addressing previously unmet medical needs.</p>","PeriodicalId":49797,"journal":{"name":"Molecular Diagnosis & Therapy","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diagnosis & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40291-024-00768-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Clinical endpoints caused by hyperlipoproteinemia include atherosclerotic cardiovascular disease and acute pancreatitis. Emerging lipid-lowering therapies targeting proprotein convertase subtilisin/kexin 9 (PCSK9), lipoprotein(a), apolipoprotein C-III, and angiopoietin-like protein 3 represent promising advances in the management of patients with hyperlipoproteinemia. These therapies offer novel approaches for lowering pathogenic lipid and lipoprotein species, particularly in patients with serious perturbations who are not adequately controlled with conventional treatments or who are unable to tolerate them. Molecular targets for these novel therapeutic agents were identified and validated through genetic epidemiology studies. Proprotein convertase subtilisin/kexin 9 inhibitors (e.g., monoclonal antibodies and small interfering RNA) have revolutionized hypercholesterolemia management by significantly reducing both low-density lipoprotein cholesterol levels and major cardiovascular events. Genome editing of PCSK9 promises to provide a potential cure for patients with familial hypercholesterolemia. Several investigational lipoprotein(a)-targeting therapies aim to reduce the risk of atherosclerotic cardiovascular disease and aortic valve disease, although definitive clinical endpoint studies remain to be completed. Inhibition of APOC3 messenger RNA expression by olezarsen and plozasiran significantly lowers plasma triglyceride levels and markedly reduces pancreatitis risk in patients with familial chylomicronemia syndrome. Finally, angiopoietin-like protein 3 inhibition by the monoclonal antibody evinacumab has transformed management of patients with homozygous familial hypercholesterolemia. Together, these novel agents expand the therapeutic cache, offering personalized lipid-lowering strategies for high-risk patients with hyperlipoproteinemia, improving clinical outcomes and addressing previously unmet medical needs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
2.50%
发文量
53
审稿时长
>12 weeks
期刊介绍: Molecular Diagnosis & Therapy welcomes current opinion articles on emerging or contentious issues, comprehensive narrative reviews, systematic reviews (as outlined by the PRISMA statement), original research articles (including short communications) and letters to the editor. All manuscripts are subject to peer review by international experts.
期刊最新文献
Identification of Somatic Genetic Variants in Superficial Vascular Malformations by Liquid Biopsy in a Cohort of 88 Patients from a French Hospital. Obecabtagene Autoleucel: First Approval. Molecular Therapeutics in Development to Treat Hyperlipoproteinemia. Advances and Challenges in the Diagnosis of Leishmaniasis. A miRNA-Based Approach in Autosomal Dominant Polycystic Kidney Disease: Challenges and Insights from Adult to Pediatric Evidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1