{"title":"Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.","authors":"Tony Lindeberg","doi":"10.1007/s10827-024-00888-w","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents an in-depth theoretical analysis of the orientation selectivity properties of simple cells and complex cells, that can be well modelled by the generalized Gaussian derivative model for visual receptive fields, with the purely spatial component of the receptive fields determined by oriented affine Gaussian derivatives for different orders of spatial differentiation. A detailed mathematical analysis is presented for the three different cases of either: (i) purely spatial receptive fields, (ii) space-time separable spatio-temporal receptive fields and (iii) velocity-adapted spatio-temporal receptive fields. Closed-form theoretical expressions for the orientation selectivity curves for idealized models of simple and complex cells are derived for all these main cases, and it is shown that the orientation selectivity of the receptive fields becomes more narrow, as a scale parameter ratio <math><mi>κ</mi></math> , defined as the ratio between the scale parameters in the directions perpendicular to vs. parallel with the preferred orientation of the receptive field, increases. It is also shown that the orientation selectivity becomes more narrow with increasing order of spatial differentiation in the underlying affine Gaussian derivative operators over the spatial domain. A corresponding theoretical orientation selectivity analysis is also presented for purely spatial receptive fields according to an affine Gabor model, showing that: (i) the orientation selectivity becomes more narrow when making the receptive fields wider in the direction perpendicular to the preferred orientation of the receptive field; while (ii) an additional degree of freedom in the affine Gabor model does, however, also strongly affect the orientation selectivity properties.</p>","PeriodicalId":54857,"journal":{"name":"Journal of Computational Neuroscience","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10827-024-00888-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an in-depth theoretical analysis of the orientation selectivity properties of simple cells and complex cells, that can be well modelled by the generalized Gaussian derivative model for visual receptive fields, with the purely spatial component of the receptive fields determined by oriented affine Gaussian derivatives for different orders of spatial differentiation. A detailed mathematical analysis is presented for the three different cases of either: (i) purely spatial receptive fields, (ii) space-time separable spatio-temporal receptive fields and (iii) velocity-adapted spatio-temporal receptive fields. Closed-form theoretical expressions for the orientation selectivity curves for idealized models of simple and complex cells are derived for all these main cases, and it is shown that the orientation selectivity of the receptive fields becomes more narrow, as a scale parameter ratio , defined as the ratio between the scale parameters in the directions perpendicular to vs. parallel with the preferred orientation of the receptive field, increases. It is also shown that the orientation selectivity becomes more narrow with increasing order of spatial differentiation in the underlying affine Gaussian derivative operators over the spatial domain. A corresponding theoretical orientation selectivity analysis is also presented for purely spatial receptive fields according to an affine Gabor model, showing that: (i) the orientation selectivity becomes more narrow when making the receptive fields wider in the direction perpendicular to the preferred orientation of the receptive field; while (ii) an additional degree of freedom in the affine Gabor model does, however, also strongly affect the orientation selectivity properties.
期刊介绍:
The Journal of Computational Neuroscience provides a forum for papers that fit the interface between computational and experimental work in the neurosciences. The Journal of Computational Neuroscience publishes full length original papers, rapid communications and review articles describing theoretical and experimental work relevant to computations in the brain and nervous system. Papers that combine theoretical and experimental work are especially encouraged. Primarily theoretical papers should deal with issues of obvious relevance to biological nervous systems. Experimental papers should have implications for the computational function of the nervous system, and may report results using any of a variety of approaches including anatomy, electrophysiology, biophysics, imaging, and molecular biology. Papers investigating the physiological mechanisms underlying pathologies of the nervous system, or papers that report novel technologies of interest to researchers in computational neuroscience, including advances in neural data analysis methods yielding insights into the function of the nervous system, are also welcomed (in this case, methodological papers should include an application of the new method, exemplifying the insights that it yields).It is anticipated that all levels of analysis from cognitive to cellular will be represented in the Journal of Computational Neuroscience.