Antibacterial properties of elastomers modified with chitosan.

Acta of bioengineering and biomechanics Pub Date : 2025-01-28 Print Date: 2024-06-01 DOI:10.37190/abb-02444-2024-02
Katarzyna Rucińska, Ewa Osuchowska, Cezary Dębek, Małgorzata Krok-Borkowicz, Elżbieta Pamuła
{"title":"Antibacterial properties of elastomers modified with chitosan.","authors":"Katarzyna Rucińska, Ewa Osuchowska, Cezary Dębek, Małgorzata Krok-Borkowicz, Elżbieta Pamuła","doi":"10.37190/abb-02444-2024-02","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan. Mixtures based on silicone, silicone with a platinum catalyst, acrylonitrile-butadiene rubber, natural rubber, and ethylene-propylene-diene rubber were developed and tested for antibacterial and physico-mechanical properties. The dispersion of chitosan in the elastomer was also investigated using a scanning electron microscope. Of the tested mixtures, three were selected, characterised by the best antibacterial and physico-mechanical properties and a very good dispersion of chitosan in the matrix. The mixtures were based on silicone, silicone with a platinum catalyst and natural rubber. Tests were performed to measure the release of compounds into water for these mixtures. Furthermore, cytotoxicity with L929 cells and cytocompatibility in direct contact with MG63 cells were investigated for silicone samples. The results showed that these materials were not toxic to mammalian cells and supported their growth. The best bactericidal properties against <i>E. coli</i> and <i>S. aureus</i> strains compared to the other tested materials (>99.0-99.9% of killed bacteria) were shown by samples made of silicone and silicone with a platinum catalyst and added chitosan. At the same time, the best physico-mechanical properties were found for the samples with chitosan based on silicone with added platinum and natural rubber. Developed materials appeared to be good candidates for manufacturing medical equipment on which the adhesion and growth of bacteria should be prevented.</p>","PeriodicalId":519996,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"26 2","pages":"13-23"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/abb-02444-2024-02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan. Mixtures based on silicone, silicone with a platinum catalyst, acrylonitrile-butadiene rubber, natural rubber, and ethylene-propylene-diene rubber were developed and tested for antibacterial and physico-mechanical properties. The dispersion of chitosan in the elastomer was also investigated using a scanning electron microscope. Of the tested mixtures, three were selected, characterised by the best antibacterial and physico-mechanical properties and a very good dispersion of chitosan in the matrix. The mixtures were based on silicone, silicone with a platinum catalyst and natural rubber. Tests were performed to measure the release of compounds into water for these mixtures. Furthermore, cytotoxicity with L929 cells and cytocompatibility in direct contact with MG63 cells were investigated for silicone samples. The results showed that these materials were not toxic to mammalian cells and supported their growth. The best bactericidal properties against E. coli and S. aureus strains compared to the other tested materials (>99.0-99.9% of killed bacteria) were shown by samples made of silicone and silicone with a platinum catalyst and added chitosan. At the same time, the best physico-mechanical properties were found for the samples with chitosan based on silicone with added platinum and natural rubber. Developed materials appeared to be good candidates for manufacturing medical equipment on which the adhesion and growth of bacteria should be prevented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macrophage activity modulation via synergistic effect of a porous substrate and low-field laser therapy. The biomechanical implications of lacunar and perilacunar microarchitecture on microdamage accumulation in cortical bone. The effect of using walking poles on the spatiotemporal gait parameters in patients who underwent surgery for hip fractures. The impact of external perturbations on postural control. The impact of running experience and shoe longitudinal bending stiffness on lower extremity biomechanics: a cross-sectional study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1