Hemodynamic analysis of left ventricular unloading with Impella versus IABP during VA-ECMO.

Acta of bioengineering and biomechanics Pub Date : 2025-01-28 Print Date: 2024-06-01 DOI:10.37190/abb-02431-2024-03
Honglong Yu, Yuehu Wu, Xuefeng Feng, Yuan He, Qilian Xie, Hu Peng
{"title":"Hemodynamic analysis of left ventricular unloading with Impella versus IABP during VA-ECMO.","authors":"Honglong Yu, Yuehu Wu, Xuefeng Feng, Yuan He, Qilian Xie, Hu Peng","doi":"10.37190/abb-02431-2024-03","DOIUrl":null,"url":null,"abstract":"<p><p><i>Purpose</i>: The utilization of intra-aortic balloon pump (IABP) and Impella has been suggested as means of left ventricular unloading in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) patients. This study aimed to assess the local hemodynamic alterations in VA-ECMO patients through simulation analyses. <i>Methods</i>: In this study, a 0D-3D multiscale model was developed, wherein resistance conditions were employed to define the flow-pressure relationship. An idealized model was employed for the aorta, and simulations were conducted to contrast the hemodynamics supported by two configurations: VA-ECMO combined with IABP, and VA-ECMO combined with Impella. <i>Results</i>: In relation to VA-ECMO alone, the combination treatment had the following differences: (1) overall mean mass flow rate increased significantly when combined with Impella and did not change significantly when combined with IABP. Blood flow pulsatility was the strongest in ECMO + IABP, and blood flow pulsatility was significantly suppressed in ECMO + Impella; (2) for all arterial inlets, HI was decreased with ECMO + Impella and increased with ECMO + IABP; (3) the flow field did not change much with ECMO + IABP, with better blood flow compliance, whereas the flow field was relatively more chaotic and disorganized with ECMO + Impella; (4) the difference between shear stress values in ECMO + IABP and ECMO alone was small, and ECMO + Impella (P6) had the largest shear stress values. <i>Conclusions</i>: Variances in hemodynamic efficacy between VA-ECMO combined with IABP and VA-ECMO combined with Impella may underlie divergent prognoses and complications. The approach to ventricular unloading during ECMO and the degree of support should be meticulously tailored to individual patient conditions, as they represent pivotal factors influencing vascular complications.</p>","PeriodicalId":519996,"journal":{"name":"Acta of bioengineering and biomechanics","volume":"26 2","pages":"25-36"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta of bioengineering and biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37190/abb-02431-2024-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/1 0:00:00","PubModel":"Print","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The utilization of intra-aortic balloon pump (IABP) and Impella has been suggested as means of left ventricular unloading in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) patients. This study aimed to assess the local hemodynamic alterations in VA-ECMO patients through simulation analyses. Methods: In this study, a 0D-3D multiscale model was developed, wherein resistance conditions were employed to define the flow-pressure relationship. An idealized model was employed for the aorta, and simulations were conducted to contrast the hemodynamics supported by two configurations: VA-ECMO combined with IABP, and VA-ECMO combined with Impella. Results: In relation to VA-ECMO alone, the combination treatment had the following differences: (1) overall mean mass flow rate increased significantly when combined with Impella and did not change significantly when combined with IABP. Blood flow pulsatility was the strongest in ECMO + IABP, and blood flow pulsatility was significantly suppressed in ECMO + Impella; (2) for all arterial inlets, HI was decreased with ECMO + Impella and increased with ECMO + IABP; (3) the flow field did not change much with ECMO + IABP, with better blood flow compliance, whereas the flow field was relatively more chaotic and disorganized with ECMO + Impella; (4) the difference between shear stress values in ECMO + IABP and ECMO alone was small, and ECMO + Impella (P6) had the largest shear stress values. Conclusions: Variances in hemodynamic efficacy between VA-ECMO combined with IABP and VA-ECMO combined with Impella may underlie divergent prognoses and complications. The approach to ventricular unloading during ECMO and the degree of support should be meticulously tailored to individual patient conditions, as they represent pivotal factors influencing vascular complications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Macrophage activity modulation via synergistic effect of a porous substrate and low-field laser therapy. The biomechanical implications of lacunar and perilacunar microarchitecture on microdamage accumulation in cortical bone. The effect of using walking poles on the spatiotemporal gait parameters in patients who underwent surgery for hip fractures. The impact of external perturbations on postural control. The impact of running experience and shoe longitudinal bending stiffness on lower extremity biomechanics: a cross-sectional study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1