Zhiyu Lu, Ling-Feng Jian, Jinyuan Zhang, Qiyuan Du, Zhufeng Yuan, Wanyi Tan, Yonggang Min
{"title":"Intrinsically Microporous Polyimides Based on a Rigid-Soft Structure for Hydrogen Separation.","authors":"Zhiyu Lu, Ling-Feng Jian, Jinyuan Zhang, Qiyuan Du, Zhufeng Yuan, Wanyi Tan, Yonggang Min","doi":"10.1021/acsami.4c18692","DOIUrl":null,"url":null,"abstract":"<p><p>Polyimide (PI)-based gas separation membranes are of great interest in the field of H<sub>2</sub> purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability. Herein, we develop a carbazole-alkyl-based diamine monomer that endows PI chains with a \"rigid-soft\" structure to balance the trade-off between them. Soft units enhance the movability of polymer chains during the film-forming process, ensuring that rigid units achieve tight chain packing and strong intermolecular interactions. Meanwhile, bulky carbazole groups could further restrict the motion of soft units in the solid state. On the one hand, it restricts the movability of the polymer chains below <i>T</i><sub>g</sub>, enhancing the small gas selectivity for H<sub>2</sub> and He. On the other hand, it ensures good thermal stability. Moreover, extending the length of the alkyl chains helps improve the free volume and intermolecular interactions simultaneously, thereby further optimizing the gas permeability/selectivity trade-off. As a result, the as-prepared PI shows H<sub>2</sub> permeability of 89.61 Barrer, H<sub>2</sub>/CH<sub>4</sub> selectivity of 87.85, and H<sub>2</sub>/N<sub>2</sub> selectivity of 45.03 in contrast to the reference FPI TFMB-6FDA exhibiting H<sub>2</sub> permeability of 92.95 Barrer, H<sub>2</sub>/CH<sub>4</sub> selectivity of 72.62, and H<sub>2</sub>/N<sub>2</sub> selectivity of 38.57. Meanwhile, a high <i>T</i><sub>g</sub> value of 334 °C is also achieved.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18692","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polyimide (PI)-based gas separation membranes are of great interest in the field of H2 purification owing to their good thermal stability, chemical stability, and mechanical properties. Among polyimide-based membranes, intrinsically microporous polyimides are easily soluble in common organic solvents, showing great potential for fabricating hollow fiber gas separation membranes. However, based on the solution-diffusion model, improving the free volume or the movability of polymer chains can improve gas permeability, but would result in poor thermal stability. Herein, we develop a carbazole-alkyl-based diamine monomer that endows PI chains with a "rigid-soft" structure to balance the trade-off between them. Soft units enhance the movability of polymer chains during the film-forming process, ensuring that rigid units achieve tight chain packing and strong intermolecular interactions. Meanwhile, bulky carbazole groups could further restrict the motion of soft units in the solid state. On the one hand, it restricts the movability of the polymer chains below Tg, enhancing the small gas selectivity for H2 and He. On the other hand, it ensures good thermal stability. Moreover, extending the length of the alkyl chains helps improve the free volume and intermolecular interactions simultaneously, thereby further optimizing the gas permeability/selectivity trade-off. As a result, the as-prepared PI shows H2 permeability of 89.61 Barrer, H2/CH4 selectivity of 87.85, and H2/N2 selectivity of 45.03 in contrast to the reference FPI TFMB-6FDA exhibiting H2 permeability of 92.95 Barrer, H2/CH4 selectivity of 72.62, and H2/N2 selectivity of 38.57. Meanwhile, a high Tg value of 334 °C is also achieved.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.