Billy Deng, Stuart Alexander McNelles, Jingyu Sun, Joaquin Ortega, Alex Adronov
{"title":"Dendrimer-Mediated Molecular Sieving on Avidin.","authors":"Billy Deng, Stuart Alexander McNelles, Jingyu Sun, Joaquin Ortega, Alex Adronov","doi":"10.1021/acs.biomac.4c01696","DOIUrl":null,"url":null,"abstract":"<p><p>Decoration of proteins and enzymes with well-defined polymeric structures allows precise decoration of protein surfaces, enabling controlled modulation of activity. Here, the impact of dendronization on the interaction between avidin and biotin was investigated. A series of generation 3-7 bis(2,2-hydroxymethyl)propionic acid (bis-MPA) dendrons were coupled to either biotin or avidin to yield a library of dendronized avidin and biotin structures. The thermodynamics of binding each biotinylated generation to a library of avidin conjugates was probed with isothermal titration calorimetry (ITC). Dissociation constants of high-generation biotin-dendrons (G5 and G6) with higher-generation avidin-dendron conjugates (Av-G6) increased from ∼10<sup>-15</sup> M (for the native structures) to ∼10<sup>-6</sup> M, and binding was found to be weaker than that of the Avidin-HABA complex. Avidin-G5 and Avidin-G6 were highly size-selective for biotinylated ligands; both prevented the binding of aprotinin (6.9 kDa), bovine serum albumin (BSA), and PEG<sub>3400</sub> while forming fractional complexes with smaller biotinylated dendrons.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01696","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Decoration of proteins and enzymes with well-defined polymeric structures allows precise decoration of protein surfaces, enabling controlled modulation of activity. Here, the impact of dendronization on the interaction between avidin and biotin was investigated. A series of generation 3-7 bis(2,2-hydroxymethyl)propionic acid (bis-MPA) dendrons were coupled to either biotin or avidin to yield a library of dendronized avidin and biotin structures. The thermodynamics of binding each biotinylated generation to a library of avidin conjugates was probed with isothermal titration calorimetry (ITC). Dissociation constants of high-generation biotin-dendrons (G5 and G6) with higher-generation avidin-dendron conjugates (Av-G6) increased from ∼10-15 M (for the native structures) to ∼10-6 M, and binding was found to be weaker than that of the Avidin-HABA complex. Avidin-G5 and Avidin-G6 were highly size-selective for biotinylated ligands; both prevented the binding of aprotinin (6.9 kDa), bovine serum albumin (BSA), and PEG3400 while forming fractional complexes with smaller biotinylated dendrons.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.