Quercetin-Driven Akkermansia Muciniphila Alleviates Obesity by Modulating Bile Acid Metabolism via an ILA/m6A/CYP8B1 Signaling.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-31 DOI:10.1002/advs.202412865
Jiaqi Liu, Youhua Liu, Chaoqun Huang, Chuan He, Tongyudan Yang, Ruiti Ren, Zimeng Xin, Xinxia Wang
{"title":"Quercetin-Driven Akkermansia Muciniphila Alleviates Obesity by Modulating Bile Acid Metabolism via an ILA/m<sup>6</sup>A/CYP8B1 Signaling.","authors":"Jiaqi Liu, Youhua Liu, Chaoqun Huang, Chuan He, Tongyudan Yang, Ruiti Ren, Zimeng Xin, Xinxia Wang","doi":"10.1002/advs.202412865","DOIUrl":null,"url":null,"abstract":"<p><p>Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A. muciniphila). Enrichment of A. muciniphila leads to generate more indole-3-lactic acid (ILA) to upregulate the expression of 12α-hydroxylase (CYP8B1) via fat mass and obesity-associated protein (FTO)/ N<sup>6</sup>-methyladenosine (m<sup>6</sup>A)/YTHDF2 manner, thereby facilitating cholesterol converts to cholic acid (CA). CA in turn drastically suppresses lipid accumulation via activating the farnesoid X receptor (FXR) in adipose tissue. This work introduces a novel therapeutic target for addressing obesity and expands upon the current limited understanding of the mediator function of m<sup>6</sup>A modifications in microorganism-influenced bile acid (BA) metabolism.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412865"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412865","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Global health is increasingly challenged by the growing prevalence of obesity and its associated complications. Quercetin, one of the most important dietary flavonoids, is being explored as an effective therapy for obesity with its mechanism remains understudied. Here in this study, it is demonstrated that quercetin intervention significantly reverses obesity-related phenotypes through reshaping the overall structure of microbiota, especially boosting colonization of the beneficial gut commensal Akkermansia muciniphila (A. muciniphila). Enrichment of A. muciniphila leads to generate more indole-3-lactic acid (ILA) to upregulate the expression of 12α-hydroxylase (CYP8B1) via fat mass and obesity-associated protein (FTO)/ N6-methyladenosine (m6A)/YTHDF2 manner, thereby facilitating cholesterol converts to cholic acid (CA). CA in turn drastically suppresses lipid accumulation via activating the farnesoid X receptor (FXR) in adipose tissue. This work introduces a novel therapeutic target for addressing obesity and expands upon the current limited understanding of the mediator function of m6A modifications in microorganism-influenced bile acid (BA) metabolism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Piezoelectric Biomaterial with Advanced Design for Tissue Infection Repair. Quercetin-Driven Akkermansia Muciniphila Alleviates Obesity by Modulating Bile Acid Metabolism via an ILA/m6A/CYP8B1 Signaling. Quorum Sensing Coordinates Carbon and Nitrogen Metabolism to Optimize Public Goods Production in Pseudomonas fluorescens 2P24. Redox-Induced Stabilization of AMBRA1 by USP7 Promotes Intestinal Oxidative Stress and Colitis Through Antagonizing DUB3-Mediated NRF2 Deubiquitination. Regulation of Liquid Self-Transport Through Architectural-Thermal Coupling: Transitioning From Free Surfaces to Open Channels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1