{"title":"Efficient Methanol Oxidation Kinetics Enabled by an Ordered Heterocatalyst with Dual Electric Fields.","authors":"Tian Liu, Qing-Xia Chen, Zhen He, Jin-Long Wang, Si-Zhe Sheng, Jian-Wei Liu, Shu-Hong Yu","doi":"10.1021/jacs.4c16885","DOIUrl":null,"url":null,"abstract":"<p><p>Induced by a sharp-tip-enhanced electric field, periodical nanoassemblies can regulate the reactant flux on the electrode surface, efficiently optimizing the mass transfer kinetics in electrocatalysis. However, when the nanoscale building blocks in homoassemblies are arranged densely, it results in the overlap and reduction of the local electric field. Herein, we present a comprehensive kinetic heteromodel that simultaneously couples the sharp-tip-enhanced electric field and charge transfer electric field between different building blocks with any arrangement densities. The dual electric fields drive the diffusion of reactants from the bulk solution to the electrode surface, significantly enhancing mass transfer kinetics along the horizontal and longitudinal directions, which promotes the electrocatalytic activity significantly. Moreover, the wide generality of the model is further confirmed by electrochemical experiments involving various electrocatalytic systems and catalysts. Therefore, this work highlights the significant role of dual electric fields in electrocatalysis, which is expected to facilitate the development of customized and outstanding catalysts in the future.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"5340-5349"},"PeriodicalIF":14.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16885","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Induced by a sharp-tip-enhanced electric field, periodical nanoassemblies can regulate the reactant flux on the electrode surface, efficiently optimizing the mass transfer kinetics in electrocatalysis. However, when the nanoscale building blocks in homoassemblies are arranged densely, it results in the overlap and reduction of the local electric field. Herein, we present a comprehensive kinetic heteromodel that simultaneously couples the sharp-tip-enhanced electric field and charge transfer electric field between different building blocks with any arrangement densities. The dual electric fields drive the diffusion of reactants from the bulk solution to the electrode surface, significantly enhancing mass transfer kinetics along the horizontal and longitudinal directions, which promotes the electrocatalytic activity significantly. Moreover, the wide generality of the model is further confirmed by electrochemical experiments involving various electrocatalytic systems and catalysts. Therefore, this work highlights the significant role of dual electric fields in electrocatalysis, which is expected to facilitate the development of customized and outstanding catalysts in the future.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.