Wenjie Wang, Muhammad Adeel Ghafar, Lu Liuyang, Inzamam Ul Haq, Li Cui, Huizhu Yuan, Liande Wang
{"title":"Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cycloxaprid and Pooled siRNAs to Enhance Control Efficacy in <i>Diaphorina citri</i>.","authors":"Wenjie Wang, Muhammad Adeel Ghafar, Lu Liuyang, Inzamam Ul Haq, Li Cui, Huizhu Yuan, Liande Wang","doi":"10.1021/acs.jafc.4c08172","DOIUrl":null,"url":null,"abstract":"<p><p>RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against <i>Diaphorina citri</i>, a vector of citrus greening disease. The CS-MOF nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). Insect bioassays demonstrated that the codelivery system significantly improved insecticidal activity, achieving over 80% mortality in <i>D. citri</i> within 2 days. The results indicate that the encapsulation of dsRNA within MOFs enhances its stability, while the controlled release properties of the nanoparticles improve the efficacy of cycloxaprid. This novel approach shows great potential in overcoming the limitations of RNA pesticides and offers a sustainable solution for pest management in agriculture. Future research should optimize the delivery system, conduct field trials, and explore its applicability to other agricultural pests.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08172","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
RNA pesticides have emerged as a promising alternative to conventional chemical pesticides due to their high specificity and minimal environmental impact. However, the instability of RNA molecules in the environment and the challenges associated with their effective delivery to target pests limit their broader application. This study addresses these challenges by developing a dual delivery system using chitosan (CS) and Metal-Organic Frameworks (MOFs) to enhance the delivery and efficacy of double-stranded RNA (dsRNA) and cycloxaprid against Diaphorina citri, a vector of citrus greening disease. The CS-MOF nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). Insect bioassays demonstrated that the codelivery system significantly improved insecticidal activity, achieving over 80% mortality in D. citri within 2 days. The results indicate that the encapsulation of dsRNA within MOFs enhances its stability, while the controlled release properties of the nanoparticles improve the efficacy of cycloxaprid. This novel approach shows great potential in overcoming the limitations of RNA pesticides and offers a sustainable solution for pest management in agriculture. Future research should optimize the delivery system, conduct field trials, and explore its applicability to other agricultural pests.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.