Wenyan Li, Zihui Liang, Peilin Wang, Zhenrun Li, Qiang Ma
{"title":"CuS@Ag Heterostructure-based Surface Plasmonic Coupling Electrochemiluminescence Sensor for Glioma miRNA-124-3p Detection","authors":"Wenyan Li, Zihui Liang, Peilin Wang, Zhenrun Li, Qiang Ma","doi":"10.1016/j.bios.2025.117202","DOIUrl":null,"url":null,"abstract":"<div><div>As an emerging class of extended crystalline organic materials, covalent organic framework (COF)-based aggregation-induced emission luminogen (AIE-gen) exhibited encouraging emissive properties. In this work, 4’,4’’,4‴,4‴’-(1,1,2,2-Ethenetetrayl)tetra(4-biphenylcarbaldehyde) (ETBC) as AIEgen was used to prepare AIE-COF (ET-COF-COOH) luminescent nanoprobe. ETBC and 1,3,5-Tris(4-aminophenyl)benzene (TAPB) had an extended π electronic system that allowed electron delocalization and overlapping transport. Because AIEgen-ETBC served as the luminescence center of ET-COF-COOH, the ET-COF-COOH possessed an ideal anodic electrochemiluminescence (ECL) performance. Moreover, due to the surface plasmonic coupling (SPC) effect of the CuS@Ag square-cavity array, the ECL signal of ET-COF-COOH was amplified as 2.8 times. The AIE-COF/CuS@Ag SCH array-based SPC-ECL sensor was used to detect miRNA-124-3p with a wide range of 1 fM-10 nM and LOD of 0.49 fM. Furthermore, the proposed biosensor can effectively distinguish between tumor tissue and adjacent tissue and offer significant potential for advancing glioma diagnosis.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"274 ","pages":"Article 117202"},"PeriodicalIF":10.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325000764","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
As an emerging class of extended crystalline organic materials, covalent organic framework (COF)-based aggregation-induced emission luminogen (AIE-gen) exhibited encouraging emissive properties. In this work, 4’,4’’,4‴,4‴’-(1,1,2,2-Ethenetetrayl)tetra(4-biphenylcarbaldehyde) (ETBC) as AIEgen was used to prepare AIE-COF (ET-COF-COOH) luminescent nanoprobe. ETBC and 1,3,5-Tris(4-aminophenyl)benzene (TAPB) had an extended π electronic system that allowed electron delocalization and overlapping transport. Because AIEgen-ETBC served as the luminescence center of ET-COF-COOH, the ET-COF-COOH possessed an ideal anodic electrochemiluminescence (ECL) performance. Moreover, due to the surface plasmonic coupling (SPC) effect of the CuS@Ag square-cavity array, the ECL signal of ET-COF-COOH was amplified as 2.8 times. The AIE-COF/CuS@Ag SCH array-based SPC-ECL sensor was used to detect miRNA-124-3p with a wide range of 1 fM-10 nM and LOD of 0.49 fM. Furthermore, the proposed biosensor can effectively distinguish between tumor tissue and adjacent tissue and offer significant potential for advancing glioma diagnosis.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.