Mechanism guided two-electron energy storage for redox-flow batteries using nickel bis(diphosphine) complexes.

IF 4.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Chemical Communications Pub Date : 2025-01-31 DOI:10.1039/d4cc06547f
Md Musharraf Hossain, Byron H Farnum
{"title":"Mechanism guided two-electron energy storage for redox-flow batteries using nickel bis(diphosphine) complexes.","authors":"Md Musharraf Hossain, Byron H Farnum","doi":"10.1039/d4cc06547f","DOIUrl":null,"url":null,"abstract":"<p><p>The storage of multiple electrons per molecule can greatly enhance the energy density of redox-flow batteries (RFBs). Here, we show that nickel bis(diphosphine) complexes efficiently store multiple electrons through either sequential 1e<sup>-</sup> redox waves or a concerted 2e<sup>-</sup> redox wave, depending on their coordination environment. Mechanistic studies comparing ligand sterics (-Me <i>vs</i>. -Ph) and coordination of monodentate ligands (MeCN <i>vs.</i> Cl<sup>-</sup>) allow for selective control of the electron transfer pathway, steering electron storage toward the more favorable 2e<sup>-</sup> wave. Continuous charge-discharge cycling experiments show more negative charge-discharge potentials and improved capacity retention in the presence of Cl<sup>-</sup>, thus improving the energy storage of nickel bis(diphosphine) complexes as anolytes in RFBs. This work shows how mechanistic understanding of 2e<sup>-</sup> redox cycles for transition metal complexes can create new opportunities for multi-electron storage in RFBs.</p>","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cc06547f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The storage of multiple electrons per molecule can greatly enhance the energy density of redox-flow batteries (RFBs). Here, we show that nickel bis(diphosphine) complexes efficiently store multiple electrons through either sequential 1e- redox waves or a concerted 2e- redox wave, depending on their coordination environment. Mechanistic studies comparing ligand sterics (-Me vs. -Ph) and coordination of monodentate ligands (MeCN vs. Cl-) allow for selective control of the electron transfer pathway, steering electron storage toward the more favorable 2e- wave. Continuous charge-discharge cycling experiments show more negative charge-discharge potentials and improved capacity retention in the presence of Cl-, thus improving the energy storage of nickel bis(diphosphine) complexes as anolytes in RFBs. This work shows how mechanistic understanding of 2e- redox cycles for transition metal complexes can create new opportunities for multi-electron storage in RFBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Communications
Chemical Communications 化学-化学综合
CiteScore
8.60
自引率
4.10%
发文量
2705
审稿时长
1.4 months
期刊介绍: ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.
期刊最新文献
Engineered extracellular vesicles: an emerging nanomedicine therapeutic platform Amorphous and outstandingly stable Ni(OH)2·0.75H2O@Ni(OH)2/FeOOH heterojunction nanosheets for efficient oxygen evolution performance Correction: Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging. Dynamic encryption systems enabled by novel α-cyanostilbene-based AIE-active liquid crystalline polymers with self-assembling saccharide units. Galvanic replacement mediated morphological adjustments boost nanoparticle performance in electrocatalytic alcohol oxidation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1