Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach
{"title":"Antimicrobial and antibiofilm activity of prepared thymol@UIO-66 and thymol/ZnONPs@UIO-66 nanoparticles against Methicillin-resistant Staphylococcus aureus: A synergistic approach","authors":"Alireza Eskandari , Seyedeh Nooshin Safavi , Hamidreza Sahrayi , Dorsa Alizadegan , Mohammadmahdi Eskandarisani , Alireza Javanmard , Mohammadreza Tajik , Zohre Sadeghi , Arvin Toutounch , Faten Eshrati Yeganeh , Hassan Noorbazargan","doi":"10.1016/j.colsurfb.2025.114529","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. <em>In-vitro</em> antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against <em>S. Aureus</em> bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25–250 µg/ml for free Thymol and 12.5–100 µg/ml for free ZnONPs to 3.9–62.5 µg/ml for Thymol@UIO-66 and 1.95–15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"249 ","pages":"Article 114529"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525000360","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces a novel approach to enhance the antibacterial properties of UIO-66 by incorporating both Thymol and ZnO nanoparticles within its framework which represents a significant advancement like exhibiting a synergistic antibacterial effect, providing a prolonged and controlled release, and mitigating cytotoxicity associated with the release of free ZnO nanoparticles by combining these two antimicrobial agents within a single, well-defined metal-organic framework. UIO-66 frameworks are investigated as carriers for the natural antimicrobial agent, Thymol, and ZnONPs offering a novel drug delivery system for antibacterial applications. Results demonstrated 132, 90, 184, and 223 nm sizes for UIO-66, ZnONPs, UIO-66 encapsulated Thymol, and UIO-66 encapsulated both Thymol and ZnONPs, respectively. Successful encapsulation of the antibacterial drug with a high entrapment efficiency of 64 % for Thymol was approved, and 49 % in-vitro release of Thymol was achieved for 72 hours. In-vitro antibacterial assays revealed promising results, with the drug-loaded nanoparticles exhibiting significantly lower MIC values and enhanced bactericidal activity against S. Aureus bacterial strains compared to the free drug, as demonstrated by agar disk diffusion and time-kill assays. MIC values reduced from a range of 31.25–250 µg/ml for free Thymol and 12.5–100 µg/ml for free ZnONPs to 3.9–62.5 µg/ml for Thymol@UIO-66 and 1.95–15.63 µg/ml for Thymol/ZnONPs@UIO-66. According to the results, the mixture of both Thymol and ZnONPs had 41 % and 16 % more antibiofilm activities in comparison with free Thymol and free ZnONPs, respectively. Furthermore, Thymol@UIO-66 had 25 % higher antibiofilm activities relative to not-encapsulated Thymol and ZnONPs, and this improvement was even 46 % more in Thymol/ZnONPs@UIO-66 in comparison with Thymol@UIO-66. Overall, this study demonstrates the potential of Thymol/ZnONPs@UIO-66 frameworks as a promising drug delivery platform for effective antibacterial therapy. This approach to overcome antibiotic resistance and improve treatment efficacy potentially.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.