A Guide for Implementing DPYD Genotyping for Systemic Fluoropyrimidines into Clinical Practice.

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Clinical Pharmacology & Therapeutics Pub Date : 2025-01-31 DOI:10.1002/cpt.3567
Teresa T Ho, D Max Smith, Christina L Aquilante, Emily J Cicali, Nihal El Rouby, Daniel L Hertz, Iman Imanirad, Jai N Patel, Stuart A Scott, Sandra M Swain, Sony Tuteja, J Kevin Hicks
{"title":"A Guide for Implementing DPYD Genotyping for Systemic Fluoropyrimidines into Clinical Practice.","authors":"Teresa T Ho, D Max Smith, Christina L Aquilante, Emily J Cicali, Nihal El Rouby, Daniel L Hertz, Iman Imanirad, Jai N Patel, Stuart A Scott, Sandra M Swain, Sony Tuteja, J Kevin Hicks","doi":"10.1002/cpt.3567","DOIUrl":null,"url":null,"abstract":"<p><p>The safety of systemic fluoropyrimidines (e.g., 5-fluorouracil, capecitabine) is impacted by germline genetic variants in DPYD, which encodes the dihydropyrimidine dehydrogenase (DPD) enzyme that functions as the rate-limiting step in the catabolism of this drug class. Genetic testing to identify those with DPD deficiency can help mitigate the risk of severe and life-threatening fluoropyrimidine-induced toxicities. Globally, the integration of DPYD genetic testing into patient care has varied greatly, ranging from being required as the standard of care in some countries to limited clinical use in others. Thus, implementation strategies have evolved differently across health systems and countries. The primary objective of this tutorial is to provide practical considerations and best practice recommendations for the implementation of DPYD-guided systemic fluoropyrimidine dosing. We adapted the Exploration, Preparation, Implementation, and Sustainment (EPIS) framework to cover topics including the clinical evidence supporting DPYD genotyping to guide fluoropyrimidine therapy, regulatory guidance for DPYD genotyping, key stakeholder engagement, logistics for DPYD genotyping, development of point-of-care clinical decision support tools, and considerations for the creation of sustainable and scalable DPYD genotype-integrated workflows. This guide also describes approaches to counseling patients about DPYD testing and result disclosure, along with examples of patient and provider educational resources. Together, DPYD testing and clinical practice integration aim to promote safe prescribing of fluoropyrimidine therapy and decrease the risk of severe and life-threatening fluoropyrimidine toxicities.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3567","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The safety of systemic fluoropyrimidines (e.g., 5-fluorouracil, capecitabine) is impacted by germline genetic variants in DPYD, which encodes the dihydropyrimidine dehydrogenase (DPD) enzyme that functions as the rate-limiting step in the catabolism of this drug class. Genetic testing to identify those with DPD deficiency can help mitigate the risk of severe and life-threatening fluoropyrimidine-induced toxicities. Globally, the integration of DPYD genetic testing into patient care has varied greatly, ranging from being required as the standard of care in some countries to limited clinical use in others. Thus, implementation strategies have evolved differently across health systems and countries. The primary objective of this tutorial is to provide practical considerations and best practice recommendations for the implementation of DPYD-guided systemic fluoropyrimidine dosing. We adapted the Exploration, Preparation, Implementation, and Sustainment (EPIS) framework to cover topics including the clinical evidence supporting DPYD genotyping to guide fluoropyrimidine therapy, regulatory guidance for DPYD genotyping, key stakeholder engagement, logistics for DPYD genotyping, development of point-of-care clinical decision support tools, and considerations for the creation of sustainable and scalable DPYD genotype-integrated workflows. This guide also describes approaches to counseling patients about DPYD testing and result disclosure, along with examples of patient and provider educational resources. Together, DPYD testing and clinical practice integration aim to promote safe prescribing of fluoropyrimidine therapy and decrease the risk of severe and life-threatening fluoropyrimidine toxicities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
期刊最新文献
Establishment of a Biomarker-Directed Clinical Endpoint Model for Early-Stage Parkinson's Disease Patients. Integrated Evidence Planning for Enhancing Patient Care: Harnessing the Power of Real-World Evidence. A Benchmark, Expand, and Calibration (BenchExCal) Trial Emulation Approach for Using Real-World Evidence to Support Indication Expansions: Design and Process for a Planned Empirical Evaluation. Current Status and Future Directions in the Development of Digital Therapeutic Interventions for Neurodevelopmental Disorders. Sodium-Glucose Cotransporter-2 Inhibitors and Diabetic-Ketoacidosis in T2DM Patients: An Updated Meta-Analysis and a Mendelian Randomization Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1