Clinical Evaluation of Drug-Drug Interactions with Obeldesivir, an Orally Administered Antiviral Agent.

IF 6.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY Clinical Pharmacology & Therapeutics Pub Date : 2025-01-31 DOI:10.1002/cpt.3575
Chi-Chi Peng, Rita Humeniuk, Anuja Raut, Anna Kwan, Lily Mak, Caitlin Stacom, Deqing Xiao, Shuguang Chen, Santosh Davies, Sharline Madera, Yiannis Koullias, Amos Lichtman, Joe Llewellyn, Elham Amini, Helen Winter, Luzelena Caro
{"title":"Clinical Evaluation of Drug-Drug Interactions with Obeldesivir, an Orally Administered Antiviral Agent.","authors":"Chi-Chi Peng, Rita Humeniuk, Anuja Raut, Anna Kwan, Lily Mak, Caitlin Stacom, Deqing Xiao, Shuguang Chen, Santosh Davies, Sharline Madera, Yiannis Koullias, Amos Lichtman, Joe Llewellyn, Elham Amini, Helen Winter, Luzelena Caro","doi":"10.1002/cpt.3575","DOIUrl":null,"url":null,"abstract":"<p><p>Obeldesivir is an oral nucleoside analog prodrug inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase and other viral polymerases. Here, two Phase I studies evaluated potential drug-drug interactions between obeldesivir and substrates or inhibitors of cytochrome P450 and drug transporters in healthy participants. When obeldesivir was tested as a precipitant, pharmacokinetic parameter point estimates for midazolam (CYP3A4 inhibition/induction), caffeine (CYP1A2 inhibition), and metformin (organic cation transporter 1 inhibition) exposures were within 80-125% no-effect bounds representing the interval within which a systemic exposure change does not warrant clinical action based on EMA/FDA guidance. Dabigatran (P-glycoprotein substrate) and pitavastatin (organic anion transporting polypeptide 1B1/1B3 substrate) exposures decreased by approximately 25% and 30%, respectively, with obeldesivir coadministration; these were considered not clinically relevant, as these exposure changes are not associated with dose changes or precautions in the US prescribing information for these drugs. When obeldesivir was evaluated as an object, exposures of GS-441524, the parent nucleoside monophosphate metabolite of obeldesivir, were within the 80-125% no-effect bounds for ritonavir (P-glycoprotein inhibition) and cyclosporin A (breast cancer resistance protein inhibition) coadministration. Famotidine (gastric acid suppression) coadministration decreased GS-441524 exposure by approximately 26%; this was within the range of exposures observed in previous Phase III studies and was considered not clinically relevant. Obeldesivir was well tolerated, and adverse events were mild to moderate. These findings indicate that obeldesivir has low potential for drug-drug interactions. Obeldesivir remains a promising treatment against a broad spectrum of viruses given its antiviral activity and favorable safety profile.</p>","PeriodicalId":153,"journal":{"name":"Clinical Pharmacology & Therapeutics","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Pharmacology & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cpt.3575","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Obeldesivir is an oral nucleoside analog prodrug inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase and other viral polymerases. Here, two Phase I studies evaluated potential drug-drug interactions between obeldesivir and substrates or inhibitors of cytochrome P450 and drug transporters in healthy participants. When obeldesivir was tested as a precipitant, pharmacokinetic parameter point estimates for midazolam (CYP3A4 inhibition/induction), caffeine (CYP1A2 inhibition), and metformin (organic cation transporter 1 inhibition) exposures were within 80-125% no-effect bounds representing the interval within which a systemic exposure change does not warrant clinical action based on EMA/FDA guidance. Dabigatran (P-glycoprotein substrate) and pitavastatin (organic anion transporting polypeptide 1B1/1B3 substrate) exposures decreased by approximately 25% and 30%, respectively, with obeldesivir coadministration; these were considered not clinically relevant, as these exposure changes are not associated with dose changes or precautions in the US prescribing information for these drugs. When obeldesivir was evaluated as an object, exposures of GS-441524, the parent nucleoside monophosphate metabolite of obeldesivir, were within the 80-125% no-effect bounds for ritonavir (P-glycoprotein inhibition) and cyclosporin A (breast cancer resistance protein inhibition) coadministration. Famotidine (gastric acid suppression) coadministration decreased GS-441524 exposure by approximately 26%; this was within the range of exposures observed in previous Phase III studies and was considered not clinically relevant. Obeldesivir was well tolerated, and adverse events were mild to moderate. These findings indicate that obeldesivir has low potential for drug-drug interactions. Obeldesivir remains a promising treatment against a broad spectrum of viruses given its antiviral activity and favorable safety profile.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.70
自引率
7.50%
发文量
290
审稿时长
2 months
期刊介绍: Clinical Pharmacology & Therapeutics (CPT) is the authoritative cross-disciplinary journal in experimental and clinical medicine devoted to publishing advances in the nature, action, efficacy, and evaluation of therapeutics. CPT welcomes original Articles in the emerging areas of translational, predictive and personalized medicine; new therapeutic modalities including gene and cell therapies; pharmacogenomics, proteomics and metabolomics; bioinformation and applied systems biology complementing areas of pharmacokinetics and pharmacodynamics, human investigation and clinical trials, pharmacovigilence, pharmacoepidemiology, pharmacometrics, and population pharmacology.
期刊最新文献
Establishment of a Biomarker-Directed Clinical Endpoint Model for Early-Stage Parkinson's Disease Patients. Integrated Evidence Planning for Enhancing Patient Care: Harnessing the Power of Real-World Evidence. A Benchmark, Expand, and Calibration (BenchExCal) Trial Emulation Approach for Using Real-World Evidence to Support Indication Expansions: Design and Process for a Planned Empirical Evaluation. Current Status and Future Directions in the Development of Digital Therapeutic Interventions for Neurodevelopmental Disorders. Sodium-Glucose Cotransporter-2 Inhibitors and Diabetic-Ketoacidosis in T2DM Patients: An Updated Meta-Analysis and a Mendelian Randomization Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1