{"title":"The microplastic menace: a critical review of its impact on marine photoautotrophs and their environment.","authors":"Digvijay Singh Yadav, Vaibhav A Mantri","doi":"10.1007/s11356-025-35981-9","DOIUrl":null,"url":null,"abstract":"<p><p>Seaweeds contribute to the energy input in marine communities and affect the chemical makeup, species composition, nutrient availability, pH, and seawater oxygen levels. However, the annual introduction of 28.5 million tons of plastic waste into oceans makes up 85% of marine litter, which is expected to grow fourfold in the next 25 years, causing a rise in concern for human health and the environment. Microplastics are small plastic particles of 1-5 mm that are either manufactured or formed due to the degradation of large plastic materials. This study analyzes the prevalence of microplastics in marine environments, their interaction with marine macro- and microalgae, environmental implications, genetic responses to microplastic exposure, and potential strategies for mitigating microplastic pollution. The leading causes identified were high plastic production rate (390 million tons annually), increased usage, inefficient waste management, meager recycling (9% is recycled), slow degradation (up to 1200 years), easy distribution via oceanic currents, and industrialization that has led to the accumulation of microplastics in the marine ecosystems. Therefore, it is recommended that the waste management system be strengthened, focusing on recycling, repurposing, reducing single-use plastics, and redirecting plastic waste away from water bodies. Developing reliable detection technologies, studying the long-term effects of microplastics in marine ecosystems, and collaborating with the public and private sectors may be encouraged. Further investigations on microplastic-seaweed interaction, the bioremediation potential of various species, and the involved molecular mechanisms may lead to new strategies for reducing microplastic loads in marine ecosystems.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-35981-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seaweeds contribute to the energy input in marine communities and affect the chemical makeup, species composition, nutrient availability, pH, and seawater oxygen levels. However, the annual introduction of 28.5 million tons of plastic waste into oceans makes up 85% of marine litter, which is expected to grow fourfold in the next 25 years, causing a rise in concern for human health and the environment. Microplastics are small plastic particles of 1-5 mm that are either manufactured or formed due to the degradation of large plastic materials. This study analyzes the prevalence of microplastics in marine environments, their interaction with marine macro- and microalgae, environmental implications, genetic responses to microplastic exposure, and potential strategies for mitigating microplastic pollution. The leading causes identified were high plastic production rate (390 million tons annually), increased usage, inefficient waste management, meager recycling (9% is recycled), slow degradation (up to 1200 years), easy distribution via oceanic currents, and industrialization that has led to the accumulation of microplastics in the marine ecosystems. Therefore, it is recommended that the waste management system be strengthened, focusing on recycling, repurposing, reducing single-use plastics, and redirecting plastic waste away from water bodies. Developing reliable detection technologies, studying the long-term effects of microplastics in marine ecosystems, and collaborating with the public and private sectors may be encouraged. Further investigations on microplastic-seaweed interaction, the bioremediation potential of various species, and the involved molecular mechanisms may lead to new strategies for reducing microplastic loads in marine ecosystems.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.