Integrating machine learning models for optimizing ecosystem health assessments through prediction of nitrate-N concentrations in the lower stretch of Ganga River, India.
{"title":"Integrating machine learning models for optimizing ecosystem health assessments through prediction of nitrate-N concentrations in the lower stretch of Ganga River, India.","authors":"Basanta Kumar Das, Sanatan Paul, Biswajit Mandal, Pranab Gogoi, Liton Paul, Ajoy Saha, Canciyal Johnson, Akankshya Das, Archisman Ray, Shreya Roy, Shubhadeep Das Gupta","doi":"10.1007/s11356-025-35999-z","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrate, a highly reactive form of inorganic nitrogen, is commonly found in aquatic environments. Understanding the dynamics of nitrate-N concentration in rivers and its interactions with other water-quality parameters is crucial for effective freshwater ecosystem management. This study uses advanced machine learning models to analyse water quality parameters and predict nitrate-N concentrations in the lower stretch of the Ganga River from the observations of six annual periods (2017 to 2022). The parameters include water temperature, pH, specific conductivity (Sp_Con), dissolved oxygen (DO), nitrate-N, total phosphate (TP), turbidity, biochemical oxygen demand (BOD), silicate, total dissolved solids (TDS), and rainfall. The present study evaluated the predictive performance of five models-Multiple Polynomial Regression (MPR), Generalized Additive Models (GAMs), Decision Tree Regression, Random Forest (RF), and XGBoost (Extreme Gradient Boosting)-using RMSE, MAE, MAPE, NSE and R<sup>2</sup> metrics. XGBoost emerged as the top performer, with an RMSE of 0.024, MAE of 0.018, MAPE of 51.805, NSE of 0.855 and R<sup>2</sup> of 0.85, explaining 85% of the variance in nitrate-N concentrations. Random Forest also demonstrated strong predictive capability, with an RMSE of 0.028, MAE of 0.021, MAPE of 57.272, NSE of 0.804 and R<sup>2</sup> of 0.80. MPR effectively modelled non-linear relationships, explaining 75% of the variance, while Decision Tree Regression and GAMs were less effective, with R<sup>2</sup> values of 0.60 and 0.48, respectively. Variables (BOD, pH, Rainfall, water temperature, and total phosphate) were the best predictors of nitrate-N dynamics. Comparative analysis with previous studies confirmed the robustness of XGBoost and Random Forest in environmental data modelling. The findings highlight the importance of advanced machine learning models in accurately predicting water quality parameters and facilitating proactive management strategies.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-35999-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrate, a highly reactive form of inorganic nitrogen, is commonly found in aquatic environments. Understanding the dynamics of nitrate-N concentration in rivers and its interactions with other water-quality parameters is crucial for effective freshwater ecosystem management. This study uses advanced machine learning models to analyse water quality parameters and predict nitrate-N concentrations in the lower stretch of the Ganga River from the observations of six annual periods (2017 to 2022). The parameters include water temperature, pH, specific conductivity (Sp_Con), dissolved oxygen (DO), nitrate-N, total phosphate (TP), turbidity, biochemical oxygen demand (BOD), silicate, total dissolved solids (TDS), and rainfall. The present study evaluated the predictive performance of five models-Multiple Polynomial Regression (MPR), Generalized Additive Models (GAMs), Decision Tree Regression, Random Forest (RF), and XGBoost (Extreme Gradient Boosting)-using RMSE, MAE, MAPE, NSE and R2 metrics. XGBoost emerged as the top performer, with an RMSE of 0.024, MAE of 0.018, MAPE of 51.805, NSE of 0.855 and R2 of 0.85, explaining 85% of the variance in nitrate-N concentrations. Random Forest also demonstrated strong predictive capability, with an RMSE of 0.028, MAE of 0.021, MAPE of 57.272, NSE of 0.804 and R2 of 0.80. MPR effectively modelled non-linear relationships, explaining 75% of the variance, while Decision Tree Regression and GAMs were less effective, with R2 values of 0.60 and 0.48, respectively. Variables (BOD, pH, Rainfall, water temperature, and total phosphate) were the best predictors of nitrate-N dynamics. Comparative analysis with previous studies confirmed the robustness of XGBoost and Random Forest in environmental data modelling. The findings highlight the importance of advanced machine learning models in accurately predicting water quality parameters and facilitating proactive management strategies.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.