Sindhuja Sengupta, Lalmohan Maji, Pronoy Kanti Das, Ghanshyam Teli, Mrinmoy Nag, Nirmalya Khan, Mridul Haque, Gurubasavaraja Swamy Purawarga Matada
{"title":"Explanatory review on DDR inhibitors: their biological activity, synthetic route, and structure-activity relationship.","authors":"Sindhuja Sengupta, Lalmohan Maji, Pronoy Kanti Das, Ghanshyam Teli, Mrinmoy Nag, Nirmalya Khan, Mridul Haque, Gurubasavaraja Swamy Purawarga Matada","doi":"10.1007/s11030-024-11091-5","DOIUrl":null,"url":null,"abstract":"<p><p>Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition. Very few scientific data are available so there is a need to study the receptors and their inhibitors. Still, there did not exist FDA-approved small molecules targeting DDR1 and DDR2 receptors so there is an urgent need to develop potent small molecules. Further, the structural features and ligand specificities encourage the researchers to be fascinated about the DDR and explore them for the mentioned biological conditions. Therefore, in the last few years, researchers have been involved in investigating the potent DDR inhibitors. The current review provides an outlook on the anatomy and physiology of DDR, focusing on the structural features of DDR receptors and the mechanism of signaling pathways. We have also compiled the evolutionary development status of DDR inhibitors according to their chemical classes, biological activity, selectivity, and structure-activity relationship. From biological activity analysis, it was revealed that compounds 64a (selectivity: DDR1) and 103a (selectivity: DDR2) were the most potent candidates with excellent activity with IC<sub>50</sub> values of 4.67 and 3.2 nM, respectively.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11091-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Discoidin domain receptors (DDR) are categorized under tyrosine kinase receptors (RTKs) and play a crucial role in various etiological conditions such as cancer, fibrosis, atherosclerosis, osteoarthritis, and inflammatory diseases. The structural domain rearrangement of DDR1 and DDR2 involved six domains of interest namely N-terminal DS, DS-like, intracellular juxtamembrane, transmembrane juxtamembrane, extracellular juxtamembrane intracellular kinase domain, and the tail portion contains small C-tail linkage. DDR has not been explored to a wide extent to be declared as a prime target for any particular pathological condition. Very few scientific data are available so there is a need to study the receptors and their inhibitors. Still, there did not exist FDA-approved small molecules targeting DDR1 and DDR2 receptors so there is an urgent need to develop potent small molecules. Further, the structural features and ligand specificities encourage the researchers to be fascinated about the DDR and explore them for the mentioned biological conditions. Therefore, in the last few years, researchers have been involved in investigating the potent DDR inhibitors. The current review provides an outlook on the anatomy and physiology of DDR, focusing on the structural features of DDR receptors and the mechanism of signaling pathways. We have also compiled the evolutionary development status of DDR inhibitors according to their chemical classes, biological activity, selectivity, and structure-activity relationship. From biological activity analysis, it was revealed that compounds 64a (selectivity: DDR1) and 103a (selectivity: DDR2) were the most potent candidates with excellent activity with IC50 values of 4.67 and 3.2 nM, respectively.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;