Laser-Induced Nanowire Percolation Interlocking for Ultrarobust Soft Electronics.

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2025-01-31 DOI:10.1007/s40820-024-01627-7
Yeongju Jung, Kyung Rok Pyun, Sejong Yu, Jiyong Ahn, Jinsol Kim, Jung Jae Park, Min Jae Lee, Byunghong Lee, Daeyeon Won, Junhyuk Bang, Seung Hwan Ko
{"title":"Laser-Induced Nanowire Percolation Interlocking for Ultrarobust Soft Electronics.","authors":"Yeongju Jung, Kyung Rok Pyun, Sejong Yu, Jiyong Ahn, Jinsol Kim, Jung Jae Park, Min Jae Lee, Byunghong Lee, Daeyeon Won, Junhyuk Bang, Seung Hwan Ko","doi":"10.1007/s40820-024-01627-7","DOIUrl":null,"url":null,"abstract":"<p><p>Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties. However, weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability, necessitating the use of an insulating protective layer, which greatly limits their utility. Herein, we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer. In this method, the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix, resulting in mechanical interlocking through percolation. This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates, significantly enhancing its universality in diverse applications. Thereby, we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor. Furthermore, enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment, broadening its application into various electrochemical devices.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"127"},"PeriodicalIF":26.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-024-01627-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Metallic nanowires have served as novel materials for soft electronics due to their outstanding mechanical compliance and electrical properties. However, weak adhesion and low mechanical robustness of nanowire networks to substrates significantly undermine their reliability, necessitating the use of an insulating protective layer, which greatly limits their utility. Herein, we present a versatile and generalized laser-based process that simultaneously achieves strong adhesion and mechanical robustness of nanowire networks on diverse substrates without the need for a protective layer. In this method, the laser-induced photothermal energy at the interface between the nanowire network and the substrate facilitates the interpenetration of the nanowire network and the polymer matrix, resulting in mechanical interlocking through percolation. This mechanism is broadly applicable across different metallic nanowires and thermoplastic substrates, significantly enhancing its universality in diverse applications. Thereby, we demonstrated the mechanical robustness of nanowires in reusable wearable physiological sensors on the skin without compromising the performance of the sensor. Furthermore, enhanced robustness and electrical conductivity by the laser-induced interlocking enables a stable functionalization of conducting polymers in a wet environment, broadening its application into various electrochemical devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Advanced Bismuth-Based Anode Materials for Efficient Potassium Storage: Structural Features, Storage Mechanisms and Modification Strategies. Advances in TENGs for Marine Energy Harvesting and In Situ Electrochemistry. Atomically Dispersed Metal Atoms: Minimizing Interfacial Charge Transport Barrier for Efficient Carbon-Based Perovskite Solar Cells. Laser-Induced Nanowire Percolation Interlocking for Ultrarobust Soft Electronics. Novel Cellulosic Fiber Composites with Integrated Multi-Band Electromagnetic Interference Shielding and Energy Storage Functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1