Xuewen Han, Cheng Hao, Yukang Peng, Han Yu, Tao Zhang, Haonan Zhang, Kaiwen Chen, Heyu Chen, Zhenxing Wang, Ning Yan, Junwen Pu
{"title":"Novel Cellulosic Fiber Composites with Integrated Multi-Band Electromagnetic Interference Shielding and Energy Storage Functionalities.","authors":"Xuewen Han, Cheng Hao, Yukang Peng, Han Yu, Tao Zhang, Haonan Zhang, Kaiwen Chen, Heyu Chen, Zhenxing Wang, Ning Yan, Junwen Pu","doi":"10.1007/s40820-025-01652-0","DOIUrl":null,"url":null,"abstract":"<p><p>In an era where technological advancement and sustainability converge, developing renewable materials with multifunctional integration is increasingly in demand. This study filled a crucial gap by integrating energy storage, multi-band electromagnetic interference (EMI) shielding, and structural design into bio-based materials. Specifically, conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO)-oxidized cellulose fiber skeleton, where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites (specific surface area of 105.6 m<sup>2</sup> g<sup>-1</sup>). Benefiting from the special hierarchical porous structure of the material, the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm<sup>-2</sup> at 5 mA cm<sup>-2</sup> and areal energy density of 3.99 mWh cm<sup>-2</sup> (2005 mW cm<sup>-2</sup>) with an excellent stability of maintaining 90.23% after 10,000 cycles at 50 mA cm<sup>-2</sup>. Meanwhile, the composites showed a high electrical conductivity of 877.19 S m<sup>-1</sup> and excellent EMI efficiency (> 99.99%) in multiple wavelength bands. The composite material's EMI values exceed 100 dB across the L, S, C, and X bands, effectively shielding electromagnetic waves in daily life. The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding, contributing to a more sustainable future.</p>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":"122"},"PeriodicalIF":26.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40820-025-01652-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
In an era where technological advancement and sustainability converge, developing renewable materials with multifunctional integration is increasingly in demand. This study filled a crucial gap by integrating energy storage, multi-band electromagnetic interference (EMI) shielding, and structural design into bio-based materials. Specifically, conductive polymer layers were formed within the 2,2,6,6-tetramethylpiperidine-1-oxide (TEMPO)-oxidized cellulose fiber skeleton, where a mild TEMPO-mediated oxidation system was applied to endow it with abundant macropores that could be utilized as active sites (specific surface area of 105.6 m2 g-1). Benefiting from the special hierarchical porous structure of the material, the constructed cellulose fiber-derived composites can realize high areal-specific capacitance of 12.44 F cm-2 at 5 mA cm-2 and areal energy density of 3.99 mWh cm-2 (2005 mW cm-2) with an excellent stability of maintaining 90.23% after 10,000 cycles at 50 mA cm-2. Meanwhile, the composites showed a high electrical conductivity of 877.19 S m-1 and excellent EMI efficiency (> 99.99%) in multiple wavelength bands. The composite material's EMI values exceed 100 dB across the L, S, C, and X bands, effectively shielding electromagnetic waves in daily life. The proposed strategy paves the way for utilizing bio-based materials in applications like energy storage and EMI shielding, contributing to a more sustainable future.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.