Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Neurochemical Research Pub Date : 2025-01-30 DOI:10.1007/s11064-025-04340-y
Peibang He, Hui Zhang, Jianfeng Wang, Yujia Guo, Qi Tian, Chengli Liu, Pian Gong, Qingsong Ye, Youjian Peng, Mingchang Li
{"title":"Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway","authors":"Peibang He,&nbsp;Hui Zhang,&nbsp;Jianfeng Wang,&nbsp;Yujia Guo,&nbsp;Qi Tian,&nbsp;Chengli Liu,&nbsp;Pian Gong,&nbsp;Qingsong Ye,&nbsp;Youjian Peng,&nbsp;Mingchang Li","doi":"10.1007/s11064-025-04340-y","DOIUrl":null,"url":null,"abstract":"<div><p>Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential. Therefore, we aim to investigate whether DPSCs can improve EBI after SAH, and explore the mechanisms. In our study, we utilized the endovascular perforation method to establish a SAH mouse model and investigated whether DPSCs administered via tail vein injection could improve EBI after SAH. Furthermore, we used hemin-stimulated HT22 cells to simulate neuronal cell injury induced by SAH and employed a co-culture approach to examine the effects of DPSCs on these cells. To gain insights into the potential mechanisms underlying the improvement of SAH-induced EBI by DPSCs, we conducted bioinformatics analysis. Finally, we further validated our findings through experiments. In vivo experiments, we found that DPSCs administration improved neurological dysfunction, reduced brain edema, and prevented neuronal apoptosis in SAH mice. Additionally, we observed a decrease in the expression level of miR-26a-5p in the cortical tissues of SAH mice, which was significantly increased following intravenous injection of DPSCs. Through bioinformatic analysis and luciferase reporter assay, we confirmed the target relationship between miR-26a-5p and PTEN. Moreover, we demonstrated that DPSCs exerted neuroprotective effects by modulating the miR-26a-5p/PTEN/AKT pathway. Our study demonstrates that DPSCs can improve EBI after SAH through the miR-26a-5p/PTEN/AKT pathway, laying a foundation for the application of DPSCs in SAH treatment. These findings provide a theoretical basis for further investigating the therapeutic mechanisms of DPSCs and developing novel treatment strategies in SAH.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04340-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke with high morbidity, mortality and disability, and early brain injury (EBI) after SAH is crucial for prognosis. Recently, stem cell therapy has garnered significant attention in the treatment of neurological diseases. Compared to other stem cells, dental pulp stem cells (DPSCs) possess several advantages, including abundant sources, absence of ethical concerns, non-invasive procurement, non-tumorigenic history and neuroprotective potential. Therefore, we aim to investigate whether DPSCs can improve EBI after SAH, and explore the mechanisms. In our study, we utilized the endovascular perforation method to establish a SAH mouse model and investigated whether DPSCs administered via tail vein injection could improve EBI after SAH. Furthermore, we used hemin-stimulated HT22 cells to simulate neuronal cell injury induced by SAH and employed a co-culture approach to examine the effects of DPSCs on these cells. To gain insights into the potential mechanisms underlying the improvement of SAH-induced EBI by DPSCs, we conducted bioinformatics analysis. Finally, we further validated our findings through experiments. In vivo experiments, we found that DPSCs administration improved neurological dysfunction, reduced brain edema, and prevented neuronal apoptosis in SAH mice. Additionally, we observed a decrease in the expression level of miR-26a-5p in the cortical tissues of SAH mice, which was significantly increased following intravenous injection of DPSCs. Through bioinformatic analysis and luciferase reporter assay, we confirmed the target relationship between miR-26a-5p and PTEN. Moreover, we demonstrated that DPSCs exerted neuroprotective effects by modulating the miR-26a-5p/PTEN/AKT pathway. Our study demonstrates that DPSCs can improve EBI after SAH through the miR-26a-5p/PTEN/AKT pathway, laying a foundation for the application of DPSCs in SAH treatment. These findings provide a theoretical basis for further investigating the therapeutic mechanisms of DPSCs and developing novel treatment strategies in SAH.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
期刊最新文献
Improvements in Exercise for Alzheimer’s Disease: Highlighting FGF21-Induced Cerebrovascular Protection Regulation by Trace Amine-Associated Receptor 1 (TAAR1) of Dopaminergic-GABAergic Interaction in the Striatum: Effects of the Enhancer Drug (-)BPAP Long Noncoding RNA ISA1 Protects Against Ischemic Brain Damage by Promoting the Transformation of Microglia Toward Anti-inflammatory Phenotype via the SOCS3/JAK2/STAT3 Pathway MTOR Promotes Astrocyte Activation and Participates in Neuropathic Pain through an Upregulation of RIP3 Dental Pulp Stem Cells Attenuate Early Brain Injury After Subarachnoid Hemorrhage via miR-26a-5p/PTEN/AKT Pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1