Transformer Graph Variational Autoencoder for Generative Molecular Design.

IF 3.2 3区 生物学 Q2 BIOPHYSICS Biophysical journal Pub Date : 2025-01-29 DOI:10.1016/j.bpj.2025.01.022
Trieu Nguyen, Aleksandra Karolak
{"title":"Transformer Graph Variational Autoencoder for Generative Molecular Design.","authors":"Trieu Nguyen, Aleksandra Karolak","doi":"10.1016/j.bpj.2025.01.022","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of drug discovery, the generation of new molecules with desirable properties remains a critical challenge. Traditional methods often rely on SMILES (Simplified Molecular Input Line Entry System) representations for molecular input data, which can limit the diversity and novelty of generated molecules. To address this, we present the Transformer Graph Variational Autoencoder (TGVAE), an innovative AI model that employs molecular graphs as input data, thus captures the complex structural relationships within molecules more effectively than string models. To enhance molecular generation capabilities, TGVAE combines a Transformer, Graph Neural Network (GNN), and Variational Autoencoder (VAE). Additionally, we address common issues like over-smoothing in training GNNs and posterior collapse in VAE to ensure robust training and improve the generation of chemically valid and diverse molecular structures. Our results demonstrate that TGVAE outperforms existing approaches, generating a larger collection of diverse molecules and discovering structures that were previously unexplored. This advancement not only brings more possibilities for drug discovery but also sets a new level for the use of AI in molecular generation.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.01.022","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of drug discovery, the generation of new molecules with desirable properties remains a critical challenge. Traditional methods often rely on SMILES (Simplified Molecular Input Line Entry System) representations for molecular input data, which can limit the diversity and novelty of generated molecules. To address this, we present the Transformer Graph Variational Autoencoder (TGVAE), an innovative AI model that employs molecular graphs as input data, thus captures the complex structural relationships within molecules more effectively than string models. To enhance molecular generation capabilities, TGVAE combines a Transformer, Graph Neural Network (GNN), and Variational Autoencoder (VAE). Additionally, we address common issues like over-smoothing in training GNNs and posterior collapse in VAE to ensure robust training and improve the generation of chemically valid and diverse molecular structures. Our results demonstrate that TGVAE outperforms existing approaches, generating a larger collection of diverse molecules and discovering structures that were previously unexplored. This advancement not only brings more possibilities for drug discovery but also sets a new level for the use of AI in molecular generation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical journal
Biophysical journal 生物-生物物理
CiteScore
6.10
自引率
5.90%
发文量
3090
审稿时长
2 months
期刊介绍: BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.
期刊最新文献
Physical effects of crowdant size and concentration on collective microtubule polymerization. Transformer Graph Variational Autoencoder for Generative Molecular Design. Competing addition processes give distinct growth regimes in the assembly of 1D filaments. Synaptic cleft geometry modulates NMDAR opening probability by tuning neurotransmitter residence time. Adhesion-driven vesicle translocation through membrane-covered pores.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1