Homospermidine synthase evolution and the origin(s) of pyrrolizidine alkaloids in Apocynaceae.

IF 2.4 2区 生物学 Q2 PLANT SCIENCES American Journal of Botany Pub Date : 2025-01-30 DOI:10.1002/ajb2.16458
Chelsea R Smith, Elisabeth Kaltenegger, Jordan Teisher, Abigail J Moore, Shannon C K Straub, Tatyana Livshultz
{"title":"Homospermidine synthase evolution and the origin(s) of pyrrolizidine alkaloids in Apocynaceae.","authors":"Chelsea R Smith, Elisabeth Kaltenegger, Jordan Teisher, Abigail J Moore, Shannon C K Straub, Tatyana Livshultz","doi":"10.1002/ajb2.16458","DOIUrl":null,"url":null,"abstract":"<p><strong>Premise: </strong>Enzymes that are encoded by paralogous genes and produce identical specialized metabolites in distantly related plant lineages are strong evidence of parallel phenotypic evolution. Inference of phenotypic homology for metabolites produced by orthologous genes is less straightforward, since orthologs may be recruited in parallel into novel pathways. In prior research on pyrrolizidine alkaloids (PAs), specialized metabolites of Apocynaceae, the evolution of homospermidine synthase (HSS), an enzyme of PA biosynthesis, was reconstructed and a single origin of PAs inferred because HSS enzymes of all known PA-producing Apocynaceae species are orthologous and descended from an ancestral enzyme with the motif (VXXXD) of an optimized HSS.</p><p><strong>Methods: </strong>We increased sampling, tested the effect of amino acid motif on HSS function, revisited motif evolution, and tested for selection to infer evolution of HSS function and its correlation with phenotype.</p><p><strong>Results: </strong>Some evidence supports a single origin of PAs: an IXXXD HSS-like gene, similar in function to VXXXD HSS, evolved in the shared ancestor of all PA-producing species; loss of HSS function occurred multiple times via pseudogenization and perhaps via evolution of an IXXXN motif. Other evidence indicates multiple origins: the VXXXD motif, highly correlated with the PA phenotype, evolved two or four times independently; the ancestral IXXXD gene was not under positive selection, while some VXXXD genes were; and substitutions at sites experiencing positive selection occurred on multiple branches in the HSS-like gene tree.</p><p><strong>Conclusions: </strong>The complexity of the genotype-function-phenotype map confounds the inference of PA homology from HSS-like gene evolution in Apocynaceae.</p>","PeriodicalId":7691,"journal":{"name":"American Journal of Botany","volume":" ","pages":"e16458"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajb2.16458","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Premise: Enzymes that are encoded by paralogous genes and produce identical specialized metabolites in distantly related plant lineages are strong evidence of parallel phenotypic evolution. Inference of phenotypic homology for metabolites produced by orthologous genes is less straightforward, since orthologs may be recruited in parallel into novel pathways. In prior research on pyrrolizidine alkaloids (PAs), specialized metabolites of Apocynaceae, the evolution of homospermidine synthase (HSS), an enzyme of PA biosynthesis, was reconstructed and a single origin of PAs inferred because HSS enzymes of all known PA-producing Apocynaceae species are orthologous and descended from an ancestral enzyme with the motif (VXXXD) of an optimized HSS.

Methods: We increased sampling, tested the effect of amino acid motif on HSS function, revisited motif evolution, and tested for selection to infer evolution of HSS function and its correlation with phenotype.

Results: Some evidence supports a single origin of PAs: an IXXXD HSS-like gene, similar in function to VXXXD HSS, evolved in the shared ancestor of all PA-producing species; loss of HSS function occurred multiple times via pseudogenization and perhaps via evolution of an IXXXN motif. Other evidence indicates multiple origins: the VXXXD motif, highly correlated with the PA phenotype, evolved two or four times independently; the ancestral IXXXD gene was not under positive selection, while some VXXXD genes were; and substitutions at sites experiencing positive selection occurred on multiple branches in the HSS-like gene tree.

Conclusions: The complexity of the genotype-function-phenotype map confounds the inference of PA homology from HSS-like gene evolution in Apocynaceae.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
American Journal of Botany
American Journal of Botany 生物-植物科学
CiteScore
4.90
自引率
6.70%
发文量
171
审稿时长
3 months
期刊介绍: The American Journal of Botany (AJB), the flagship journal of the Botanical Society of America (BSA), publishes peer-reviewed, innovative, significant research of interest to a wide audience of plant scientists in all areas of plant biology (structure, function, development, diversity, genetics, evolution, systematics), all levels of organization (molecular to ecosystem), and all plant groups and allied organisms (cyanobacteria, algae, fungi, and lichens). AJB requires authors to frame their research questions and discuss their results in terms of major questions of plant biology. In general, papers that are too narrowly focused, purely descriptive, natural history, broad surveys, or that contain only preliminary data will not be considered.
期刊最新文献
Changes in flowering phenology with altered rainfall and the potential community impacts in an annual grassland. Fine-scale diversity models reveal impacts of invasive Gaillardia pulchella on regenerating vegetation in a sand dune grassland. Island plant fire tolerance: Functional traits associated with novel disturbance regimes. Pandanus plastomes decoded: When climate mirrors morphology and phylogenetic relationships. Homospermidine synthase evolution and the origin(s) of pyrrolizidine alkaloids in Apocynaceae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1