Characterization of the N- and C-terminal domain interface of the three main apoE isoforms: A combined quantitative cross-linking mass spectrometry and molecular modeling study

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2025-01-27 DOI:10.1016/j.bbagen.2025.130768
Azadeh Mohammadi , Stéphanie Deroo , Alexander Leitner , Florian Stengel , Eva-Maria Krammer , Ruedi Aebersold , Martine Prévost , Vincent Raussens
{"title":"Characterization of the N- and C-terminal domain interface of the three main apoE isoforms: A combined quantitative cross-linking mass spectrometry and molecular modeling study","authors":"Azadeh Mohammadi ,&nbsp;Stéphanie Deroo ,&nbsp;Alexander Leitner ,&nbsp;Florian Stengel ,&nbsp;Eva-Maria Krammer ,&nbsp;Ruedi Aebersold ,&nbsp;Martine Prévost ,&nbsp;Vincent Raussens","doi":"10.1016/j.bbagen.2025.130768","DOIUrl":null,"url":null,"abstract":"<div><div>Apolipoprotein E (apoE) polymorphism is associated with different pathologies such as atherosclerosis and Alzheimer's disease. Knowledge of the three-dimensional structure of apoE and isoform-specific structural differences are prerequisites for the rational design of small molecule structure modulators that correct the detrimental effects of pathological isoforms. In this study, cross-linking mass spectrometry (XL-MS) targeting Asp, Glu and Lys residues was used to explore the intramolecular interactions in the E2, E3 and E4 isoforms of apoE. The resulting quantitative XL-MS data combined with molecular modeling revealed isoform-specific characteristics of the N- and C-terminal domain interfaces as well as the isoform-dependent dynamic equilibrium of these interfaces. Finally, the data identified a network of salt bridges formed by R61-R112-E109 residues in the N-terminal helical bundle as a modulator of the interaction with the C-terminal domain making this network a potential drug target.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 4","pages":"Article 130768"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000133","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Apolipoprotein E (apoE) polymorphism is associated with different pathologies such as atherosclerosis and Alzheimer's disease. Knowledge of the three-dimensional structure of apoE and isoform-specific structural differences are prerequisites for the rational design of small molecule structure modulators that correct the detrimental effects of pathological isoforms. In this study, cross-linking mass spectrometry (XL-MS) targeting Asp, Glu and Lys residues was used to explore the intramolecular interactions in the E2, E3 and E4 isoforms of apoE. The resulting quantitative XL-MS data combined with molecular modeling revealed isoform-specific characteristics of the N- and C-terminal domain interfaces as well as the isoform-dependent dynamic equilibrium of these interfaces. Finally, the data identified a network of salt bridges formed by R61-R112-E109 residues in the N-terminal helical bundle as a modulator of the interaction with the C-terminal domain making this network a potential drug target.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
No structure, no problem: Protein stabilization by Hero proteins and other chaperone-like IDPs. Editorial Board “Mannose glycans as key players in trained immunity: A novel anti-tumoral catalyst” Inhibition of amyloid formation of prion fragment (106–128) by polyphenolic compounds Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1