Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochimica et biophysica acta. General subjects Pub Date : 2025-02-19 DOI:10.1016/j.bbagen.2025.130777
Irina V. Gorudko , Daria V. Grigorieva , Grigory A. Gusakov , Lyudmila V. Baran , Veronika E. Reut , Ekaterina V. Sak , Ilya V. Baimler , Alexander V. Simakin , Alexey S. Dorokhov , Andrey Yu. Izmailov , Dmitriy A. Serov , Sergey V. Gudkov
{"title":"Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils","authors":"Irina V. Gorudko ,&nbsp;Daria V. Grigorieva ,&nbsp;Grigory A. Gusakov ,&nbsp;Lyudmila V. Baran ,&nbsp;Veronika E. Reut ,&nbsp;Ekaterina V. Sak ,&nbsp;Ilya V. Baimler ,&nbsp;Alexander V. Simakin ,&nbsp;Alexey S. Dorokhov ,&nbsp;Andrey Yu. Izmailov ,&nbsp;Dmitriy A. Serov ,&nbsp;Sergey V. Gudkov","doi":"10.1016/j.bbagen.2025.130777","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of selenium (Se) nanoparticles in the form of rods (SeNrs) and spheres (SeSps), synthesized by laser ablation, on the structural and functional properties of human blood erythrocytes and neutrophils was studied for anticancer activity <em>in vitro</em>. SeNrs and SeSps do not have cytotoxicity towards neutrophils and do not cause hemolysis. The elastic modulus and resistance of erythrocytes to HOCl-induced hemolysis increased after binding of Se nanoparticles to the plasma membrane. The interaction of Se nanoparticles with neutrophils is accompanied by their actin-dependent macropinocytosis, triggering intracellular signaling processes leading to the assembly and activation of NADPH oxidase. Comparative analysis of the effects of SeNrs and SeSps on cells showed that they have similar effects. This may be due to the fact that SeNrs interact with the cell surface with their end faces, and, therefore, have the same initial contact with the plasma membrane as SeSps. However, SeSps and SeNrs showed chronic cytotoxicity after 48 h incubation, indicating the need to find ways to reduce their toxicity further. Further use of Se nanoparticles in anisotropic form in biomedical research for the development of therapeutic agents seems promising.</div></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1869 5","pages":"Article 130777"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416525000224","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of selenium (Se) nanoparticles in the form of rods (SeNrs) and spheres (SeSps), synthesized by laser ablation, on the structural and functional properties of human blood erythrocytes and neutrophils was studied for anticancer activity in vitro. SeNrs and SeSps do not have cytotoxicity towards neutrophils and do not cause hemolysis. The elastic modulus and resistance of erythrocytes to HOCl-induced hemolysis increased after binding of Se nanoparticles to the plasma membrane. The interaction of Se nanoparticles with neutrophils is accompanied by their actin-dependent macropinocytosis, triggering intracellular signaling processes leading to the assembly and activation of NADPH oxidase. Comparative analysis of the effects of SeNrs and SeSps on cells showed that they have similar effects. This may be due to the fact that SeNrs interact with the cell surface with their end faces, and, therefore, have the same initial contact with the plasma membrane as SeSps. However, SeSps and SeNrs showed chronic cytotoxicity after 48 h incubation, indicating the need to find ways to reduce their toxicity further. Further use of Se nanoparticles in anisotropic form in biomedical research for the development of therapeutic agents seems promising.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochimica et biophysica acta. General subjects
Biochimica et biophysica acta. General subjects 生物-生化与分子生物学
CiteScore
6.40
自引率
0.00%
发文量
139
审稿时长
30 days
期刊介绍: BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.
期刊最新文献
No structure, no problem: Protein stabilization by Hero proteins and other chaperone-like IDPs. Editorial Board “Mannose glycans as key players in trained immunity: A novel anti-tumoral catalyst” Inhibition of amyloid formation of prion fragment (106–128) by polyphenolic compounds Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1