Wu Li , Xie Yong-Yan , Mu Jia-Xin , Ge Shu-Chao , Huang Li-Ping
{"title":"Senescent microglia: The hidden culprits accelerating Alzheimer’s disease","authors":"Wu Li , Xie Yong-Yan , Mu Jia-Xin , Ge Shu-Chao , Huang Li-Ping","doi":"10.1016/j.brainres.2025.149480","DOIUrl":null,"url":null,"abstract":"<div><div>Ageing is a major risk factor for neurodegenerative diseases like Alzheimer’s disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging. In AD, microglia exhibit alterations in gene expression, cellular morphology, and functional behavior. By focusing on the immunomodulatory functions of factors secreted by senescent microglia, such as cytokines, chemokines, complement factors, and reactive oxygen species (ROS), we explore the diverse detrimental effects of microglia in aging and AD pathogenesis, including Aβ accumulation, Tau deposition, synaptic dysfunction, and neuroinflammation. These collectively contribute to hastening the progression of. In this review, we highlight the key role of senescent microglia in the pathological processes of AD. Then we propose that targeting senescent microglia holds great promise for therapeutic interventions in neurodegenerative diseases.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1851 ","pages":"Article 149480"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899325000381","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ageing is a major risk factor for neurodegenerative diseases like Alzheimer’s disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging. In AD, microglia exhibit alterations in gene expression, cellular morphology, and functional behavior. By focusing on the immunomodulatory functions of factors secreted by senescent microglia, such as cytokines, chemokines, complement factors, and reactive oxygen species (ROS), we explore the diverse detrimental effects of microglia in aging and AD pathogenesis, including Aβ accumulation, Tau deposition, synaptic dysfunction, and neuroinflammation. These collectively contribute to hastening the progression of. In this review, we highlight the key role of senescent microglia in the pathological processes of AD. Then we propose that targeting senescent microglia holds great promise for therapeutic interventions in neurodegenerative diseases.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.