{"title":"Classification-based pathway analysis using GPNet with novel P-value computation.","authors":"Hao Lu, Mostafa Rezapour, Haseebullah Baha, Muhammad Khalid Khan Niazi, Aarthi Narayanan, Metin Nafi Gurcan","doi":"10.1093/bib/bbaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks. We validated our method effectiveness through a comparative study using a simulated dataset and RNA-Seq data from The Cancer Genome Atlas breast cancer dataset. Our method was benchmarked against traditional techniques (ORA, FCS), shallow machine learning models (logistic regression, support vector machine), and deep learning approaches (DeepHisCom, PASNet). The results demonstrate that GPNet outperforms these methods in low-SNR, large-sample datasets, where it remains robust and reliable, significantly reducing both Type I error and improving power. This makes our method well suited for pathway analysis in large, multi-center studies. The code can be found at https://github.com/haolu123/GPNet_pathway\">https://github.com/haolu123/GPNet_pathway.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf039","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Pathway analysis plays a critical role in bioinformatics, enabling researchers to identify biological pathways associated with various conditions by analyzing gene expression data. However, the rise of large, multi-center datasets has highlighted limitations in traditional methods like Over-Representation Analysis (ORA) and Functional Class Scoring (FCS), which struggle with low signal-to-noise ratios (SNR) and large sample sizes. To tackle these challenges, we use a deep learning-based classification method, Gene PointNet, and a novel $P$-value computation approach leveraging the confusion matrix to address pathway analysis tasks. We validated our method effectiveness through a comparative study using a simulated dataset and RNA-Seq data from The Cancer Genome Atlas breast cancer dataset. Our method was benchmarked against traditional techniques (ORA, FCS), shallow machine learning models (logistic regression, support vector machine), and deep learning approaches (DeepHisCom, PASNet). The results demonstrate that GPNet outperforms these methods in low-SNR, large-sample datasets, where it remains robust and reliable, significantly reducing both Type I error and improving power. This makes our method well suited for pathway analysis in large, multi-center studies. The code can be found at https://github.com/haolu123/GPNet_pathway">https://github.com/haolu123/GPNet_pathway.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.