Lethal and sublethal effects of selected bacterial and neem-based novel insecticides on cotton aphid, Aphis gossypii and the predator, Coccinella septempunctata.
{"title":"Lethal and sublethal effects of selected bacterial and neem-based novel insecticides on cotton aphid, <i>Aphis gossypii</i> and the predator, <i>Coccinella septempunctata</i>.","authors":"Hail Kamel Shannag, Aseel Atallah Al-Salman","doi":"10.1017/S0007485324000671","DOIUrl":null,"url":null,"abstract":"<p><p>We evaluated the lethal and sublethal effects of two novel Betaproteobacteria-based insecticides (<i>Burkholderia</i> spp. strain A396 as Venerate® XC; <i>Chromobacterium subtsugae</i> strain PRAA4-1 as Grandevo® WDG) and two neem-based insecticides (1.2% azadirachtin A and B as Azatrol and 3% azadiractin as Molt-X) on the cotton aphid, <i>Aphis gossypii</i>, and its natural enemy, <i>Coccinella septempunctata</i>. Aphids were given both residual and direct treatments, i.e. exposed to residues applied by leaf dipping, or by spraying the insects and foliage, while the predator was treated directly with insecticides. Well-established spirotetramat (Movento® 240 SC) was used as standard due to its effectiveness against a wide range of pests, its unique mode of action, and its systemic properties. All insecticides were effective against aphid mostly in concentration-dependent manner, as do exposure time, but at different magnitudes. Spirotetramat and Azatrol induced the highest toxicity to adult aphids, while spirotetramat and Molt-X were more noxious to aphid nymphs. <i>C. subtsugae</i> and <i>Burkholderia</i> were less effective, inducing only moderate levels of aphid mortality. Azatrol and spirotetramat were more detrimental to the fecundity of aphid compared to other products. Insecticides significantly increased the development time of nymphs surviving exposure to insecticides, except <i>Burkholderia.</i> Azatrol were more destructive to eggs, larvae and adult of <i>Coccinella septempunctata</i>, together with spirotetramat for young larvae and adults, relative to other treatment. The development time of predator larvae remained unaffected by treatment. New Betaproteobacteria- and neem-based insecticides except Azatrol seem to be a promising tool to suppress population of <i>Aphis gossypii</i> and integrate pest management programmes.</p>","PeriodicalId":9370,"journal":{"name":"Bulletin of Entomological Research","volume":" ","pages":"1-14"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Entomological Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0007485324000671","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We evaluated the lethal and sublethal effects of two novel Betaproteobacteria-based insecticides (Burkholderia spp. strain A396 as Venerate® XC; Chromobacterium subtsugae strain PRAA4-1 as Grandevo® WDG) and two neem-based insecticides (1.2% azadirachtin A and B as Azatrol and 3% azadiractin as Molt-X) on the cotton aphid, Aphis gossypii, and its natural enemy, Coccinella septempunctata. Aphids were given both residual and direct treatments, i.e. exposed to residues applied by leaf dipping, or by spraying the insects and foliage, while the predator was treated directly with insecticides. Well-established spirotetramat (Movento® 240 SC) was used as standard due to its effectiveness against a wide range of pests, its unique mode of action, and its systemic properties. All insecticides were effective against aphid mostly in concentration-dependent manner, as do exposure time, but at different magnitudes. Spirotetramat and Azatrol induced the highest toxicity to adult aphids, while spirotetramat and Molt-X were more noxious to aphid nymphs. C. subtsugae and Burkholderia were less effective, inducing only moderate levels of aphid mortality. Azatrol and spirotetramat were more detrimental to the fecundity of aphid compared to other products. Insecticides significantly increased the development time of nymphs surviving exposure to insecticides, except Burkholderia. Azatrol were more destructive to eggs, larvae and adult of Coccinella septempunctata, together with spirotetramat for young larvae and adults, relative to other treatment. The development time of predator larvae remained unaffected by treatment. New Betaproteobacteria- and neem-based insecticides except Azatrol seem to be a promising tool to suppress population of Aphis gossypii and integrate pest management programmes.
期刊介绍:
Established in 1910, the internationally recognised Bulletin of Entomological Research aims to further global knowledge of entomology through the generalisation of research findings rather than providing more entomological exceptions. The Bulletin publishes high quality and original research papers, ''critiques'' and review articles concerning insects or other arthropods of economic importance in agriculture, forestry, stored products, biological control, medicine, animal health and natural resource management. The scope of papers addresses the biology, ecology, behaviour, physiology and systematics of individuals and populations, with a particular emphasis upon the major current and emerging pests of agriculture, horticulture and forestry, and vectors of human and animal diseases. This includes the interactions between species (plants, hosts for parasites, natural enemies and whole communities), novel methodological developments, including molecular biology, in an applied context. The Bulletin does not publish the results of pesticide testing or traditional taxonomic revisions.