Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

IF 3.6 4区 医学 Q3 CELL BIOLOGY Cellular and Molecular Neurobiology Pub Date : 2025-01-30 DOI:10.1007/s10571-025-01532-6
Ziyu He, Jun Zhang, Jia Xu, Yu Wang, Xiaolong Zheng, Wei Wang
{"title":"Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.","authors":"Ziyu He, Jun Zhang, Jia Xu, Yu Wang, Xiaolong Zheng, Wei Wang","doi":"10.1007/s10571-025-01532-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"45 1","pages":"18"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11782389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10571-025-01532-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain. Additional stimuli were delivered to mimic the different peripheral sensory inputs in daily life. Following noxious rather than innocuous or no stimulation, a greater number of spinal dorsal horn (DH) neurons were activated after SCI, mainly in the deep DH. SCI facilitated the activation of excitatory but not inhibitory DH neurons. Moreover, excitatory interneurons expressing protein kinase C gamma (PKCγ) in laminae II-III, which are known to play a role in mechanical allodynia after peripheral nerve injury, responded in larger amounts to both innocuous and noxious stimulation following SCI. Accordingly, more spinal projection neurons in lamina I were activated. Within supraspinal nuclei processing pain, differentially enhanced activation in response to noxious stimulation was detected after SCI, with a significant increase in the locus coeruleus and medial thalamus, a slight increase in the periaqueductal gray and dorsal raphe, and no change in the lateral parabrachial nucleus or primary sensory cortex. These findings indicated differential hyperexcitability along the sensory neuroaxis following SCI, with a particular emphasis on the involvement of specific neuron subtypes, such as spinal PKCγ interneurons and locus coeruleus noradrenergic neurons, which may serve as crucial targets for potential therapies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
137
审稿时长
4-8 weeks
期刊介绍: Cellular and Molecular Neurobiology publishes original research concerned with the analysis of neuronal and brain function at the cellular and subcellular levels. The journal offers timely, peer-reviewed articles that describe anatomic, genetic, physiologic, pharmacologic, and biochemical approaches to the study of neuronal function and the analysis of elementary mechanisms. Studies are presented on isolated mammalian tissues and intact animals, with investigations aimed at the molecular mechanisms or neuronal responses at the level of single cells. Cellular and Molecular Neurobiology also presents studies of the effects of neurons on other organ systems, such as analysis of the electrical or biochemical response to neurotransmitters or neurohormones on smooth muscle or gland cells.
期刊最新文献
Organochlorine Pesticides and Epigenetic Alterations in Brain Cancer. Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury. Correction: Myosin IIA Regulated Tight Junction in Oxygen Glucose-Deprived Brain Endothelial Cells Via Activation of TLR4/PI3K/Akt/JNK1/2/14-3-3ε/NF-κB/MMP9 Signal Transduction Pathway. Correction: Docosahexaenoic Acid Alleviates Oxidative Stress-Based Apoptosis Via Improving Mitochondrial Dynamics in Early Brain Injury After Subarachnoid Hemorrhage. AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1