Arjun Dosajh , Prakul Agrawal , Prathit Chatterjee, U. Deva Priyakumar
{"title":"Modern machine learning methods for protein property prediction","authors":"Arjun Dosajh , Prakul Agrawal , Prathit Chatterjee, U. Deva Priyakumar","doi":"10.1016/j.sbi.2025.102990","DOIUrl":null,"url":null,"abstract":"<div><div>Recent progress and development of artificial intelligence and machine learning (AI/ML) techniques have enabled addressing complex biomolecular problems. AI/ML models learn the underlying distribution of data they are trained on and when exposed to new inputs, they make predictions based on patterns and relationships previously observed in the training set. Further, generative artificial intelligence (GenAI) can be used to accurately generate protein structure or sequence from specific selected properties. This review specifically focuses on the applications of AI/ML in predicting important functional properties of proteins, and the potential prospects of reverse-engineering in depicting the sequence and structure, from available protein-property information.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"90 ","pages":"Article 102990"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000089","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent progress and development of artificial intelligence and machine learning (AI/ML) techniques have enabled addressing complex biomolecular problems. AI/ML models learn the underlying distribution of data they are trained on and when exposed to new inputs, they make predictions based on patterns and relationships previously observed in the training set. Further, generative artificial intelligence (GenAI) can be used to accurately generate protein structure or sequence from specific selected properties. This review specifically focuses on the applications of AI/ML in predicting important functional properties of proteins, and the potential prospects of reverse-engineering in depicting the sequence and structure, from available protein-property information.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation