Deep Learning-Powered CT-Less Multitracer Organ Segmentation From PET Images: A Solution for Unreliable CT Segmentation in PET/CT Imaging.

IF 9.6 3区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Clinical Nuclear Medicine Pub Date : 2025-01-28 DOI:10.1097/RLU.0000000000005685
Yazdan Salimi, Zahra Mansouri, Isaac Shiri, Ismini Mainta, Habib Zaidi
{"title":"Deep Learning-Powered CT-Less Multitracer Organ Segmentation From PET Images: A Solution for Unreliable CT Segmentation in PET/CT Imaging.","authors":"Yazdan Salimi, Zahra Mansouri, Isaac Shiri, Ismini Mainta, Habib Zaidi","doi":"10.1097/RLU.0000000000005685","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multitracer PET segmentation framework.</p><p><strong>Patients and methods: </strong>We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to coregistered PET images and used to train 4 different deep learning models using different images as input, including noncorrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for 68Ga tracers (tasks 3 and 4, respectively, using 15 organs). The models' performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference.</p><p><strong>Results: </strong>The average Dice coefficient over all organs was 0.81 ± 0.15, 0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respectively. PET-ASC models outperformed PET-NC models (P < 0.05) for most of organs. The highest Dice values were achieved for the brain (0.93 to 0.96 in all 4 tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well.</p><p><strong>Conclusions: </strong>Deep learning models allow high-performance multiorgan segmentation for 2 popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.</p>","PeriodicalId":10692,"journal":{"name":"Clinical Nuclear Medicine","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLU.0000000000005685","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The common approach for organ segmentation in hybrid imaging relies on coregistered CT (CTAC) images. This method, however, presents several limitations in real clinical workflows where mismatch between PET and CT images are very common. Moreover, low-dose CTAC images have poor quality, thus challenging the segmentation task. Recent advances in CT-less PET imaging further highlight the necessity for an effective PET organ segmentation pipeline that does not rely on CT images. Therefore, the goal of this study was to develop a CT-less multitracer PET segmentation framework.

Patients and methods: We collected 2062 PET/CT images from multiple scanners. The patients were injected with either 18F-FDG (1487) or 68Ga-PSMA (575). PET/CT images with any kind of mismatch between PET and CT images were detected through visual assessment and excluded from our study. Multiple organs were delineated on CT components using previously trained in-house developed nnU-Net models. The segmentation masks were resampled to coregistered PET images and used to train 4 different deep learning models using different images as input, including noncorrected PET (PET-NC) and attenuation and scatter-corrected PET (PET-ASC) for 18F-FDG (tasks 1 and 2, respectively using 22 organs) and PET-NC and PET-ASC for 68Ga tracers (tasks 3 and 4, respectively, using 15 organs). The models' performance was evaluated in terms of Dice coefficient, Jaccard index, and segment volume difference.

Results: The average Dice coefficient over all organs was 0.81 ± 0.15, 0.82 ± 0.14, 0.77 ± 0.17, and 0.79 ± 0.16 for tasks 1, 2, 3, and 4, respectively. PET-ASC models outperformed PET-NC models (P < 0.05) for most of organs. The highest Dice values were achieved for the brain (0.93 to 0.96 in all 4 tasks), whereas the lowest values were achieved for small organs, such as the adrenal glands. The trained models showed robust performance on dynamic noisy images as well.

Conclusions: Deep learning models allow high-performance multiorgan segmentation for 2 popular PET tracers without the use of CT information. These models may tackle the limitations of using CT segmentation in PET/CT image quantification, kinetic modeling, radiomics analysis, dosimetry, or any other tasks that require organ segmentation masks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinical Nuclear Medicine
Clinical Nuclear Medicine 医学-核医学
CiteScore
2.90
自引率
31.10%
发文量
1113
审稿时长
2 months
期刊介绍: Clinical Nuclear Medicine is a comprehensive and current resource for professionals in the field of nuclear medicine. It caters to both generalists and specialists, offering valuable insights on how to effectively apply nuclear medicine techniques in various clinical scenarios. With a focus on timely dissemination of information, this journal covers the latest developments that impact all aspects of the specialty. Geared towards practitioners, Clinical Nuclear Medicine is the ultimate practice-oriented publication in the field of nuclear imaging. Its informative articles are complemented by numerous illustrations that demonstrate how physicians can seamlessly integrate the knowledge gained into their everyday practice.
期刊最新文献
Positive 68 Ga-FAPI-04 PET/MRI and Negative 18 F-FDG PET/CT Imaging in Incidental Appendiceal Goblet Cell Adenocarcinoma. FDG Uptake in Brown Adipose Tissue Activated by a Long-Acting β2-Adrenergic Receptor Agonist Inhaler Prescribed for Bronchial Asthma. Hypertrophic Olivary Degeneration: Deafferentation With a Difference on FDG PET/CT. Primary Squamous Cell Carcinoma of the Breast With 18 F-FDG PET/CT. Upstaging of Invasive Lobular Cancer With FES PET/CT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1