In silico analysis of the effect of HCV genotype-specific polymorphisms in Core, NS3, NS5A, and NS5B proteins on T-cell epitope processing and presentation.

IF 4 2区 生物学 Q2 MICROBIOLOGY Frontiers in Microbiology Pub Date : 2025-01-15 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1498069
Samina Baig, Assel Berikkara, Ramsha Khalid, Syed A Subhan, Tanveer Abbas, Syed Hani Abidi
{"title":"<i>In silico</i> analysis of the effect of HCV genotype-specific polymorphisms in Core, NS3, NS5A, and NS5B proteins on T-cell epitope processing and presentation.","authors":"Samina Baig, Assel Berikkara, Ramsha Khalid, Syed A Subhan, Tanveer Abbas, Syed Hani Abidi","doi":"10.3389/fmicb.2024.1498069","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>HCV genotypes are 30-35% polymorphic at the nucleotide level, while subtypes within the same genotype differ by nearly 20%. Although previous studies have shown the immune escape potential of several mutations within the HCV proteins, little is known about the effect of genotype/subtype-specific gene polymorphism on T-cell immunity. Therefore, this study employed several <i>in silico</i> methods to examine the impact of genotype/subtype-specific polymorphisms in Core, NS3, NS5A, and NS5B sequences on T cell epitope processing and HLA-epitope interactions.</p><p><strong>Methods: </strong>For this study, 8,942, 17,700, 14,645, and 3,277 HCV Core, NS3, NS5A, and NS5B sequences, respectively, from eight genotypes and 21 subtypes were retrieved from the Los Alamos HCV Database. Next, the NetCTL tool was employed to predict Cytotoxic T Lymphocyte (CTL) epitopes based on combined proteasomal cleavage, TAP efficacy, and HLA class I receptor binding scores. PEP-FOLD was used to model selected epitopes, followed by peptide-HLA docking using HPEPDOCK. Finally, molecular dynamics simulations were conducted for 200 ns using Desmond software to analyze differences in HLA-epitope (from different HCV genotypes) interaction kinetics and dynamics.</p><p><strong>Results: </strong>A total of 3,410, 8,054, 6,532, and 14,015 CTL epitopes were observed in the HCV Core, NS3, NS5A, and NS5B sequences, respectively. Significant genotype/subtype-specific variations in CTL values and docking scores were observed among NS3, NS5A, and NS5B proteins. <i>In silico</i> results reveal that epitopes from genotype 6b (NS3), 6d/r (NS5B), 6o and 6 k (NS5A) exhibit higher immunogenicity than other genotypes, forming more energetically stable complexes with host receptors. These epitopes, compared to those from the same positions but different genotypes, showed binding energies of -144.24 kcal/mol, -85.30 kcal/mol, and - 43 kcal/mol, respectively. Over a 200 ns MD simulation, GT 6b and 6d/r epitopes displayed up to a 40% stronger binding energy with the HLA receptor. These findings suggest that patients infected with GT 6 may experience enhanced T cell responsiveness and broader immunogenicity.</p><p><strong>Conclusion: </strong>Our study suggests that genotype/subtype-specific polymorphism in HCV may result in altered immune responses by modulating T-cell epitope processing and interaction with HLA receptors. Further experimental studies can be performed to confirm the effect of genotype/subtype-specific polymorphisms on T cell-mediated immune response.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1498069"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774985/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1498069","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: HCV genotypes are 30-35% polymorphic at the nucleotide level, while subtypes within the same genotype differ by nearly 20%. Although previous studies have shown the immune escape potential of several mutations within the HCV proteins, little is known about the effect of genotype/subtype-specific gene polymorphism on T-cell immunity. Therefore, this study employed several in silico methods to examine the impact of genotype/subtype-specific polymorphisms in Core, NS3, NS5A, and NS5B sequences on T cell epitope processing and HLA-epitope interactions.

Methods: For this study, 8,942, 17,700, 14,645, and 3,277 HCV Core, NS3, NS5A, and NS5B sequences, respectively, from eight genotypes and 21 subtypes were retrieved from the Los Alamos HCV Database. Next, the NetCTL tool was employed to predict Cytotoxic T Lymphocyte (CTL) epitopes based on combined proteasomal cleavage, TAP efficacy, and HLA class I receptor binding scores. PEP-FOLD was used to model selected epitopes, followed by peptide-HLA docking using HPEPDOCK. Finally, molecular dynamics simulations were conducted for 200 ns using Desmond software to analyze differences in HLA-epitope (from different HCV genotypes) interaction kinetics and dynamics.

Results: A total of 3,410, 8,054, 6,532, and 14,015 CTL epitopes were observed in the HCV Core, NS3, NS5A, and NS5B sequences, respectively. Significant genotype/subtype-specific variations in CTL values and docking scores were observed among NS3, NS5A, and NS5B proteins. In silico results reveal that epitopes from genotype 6b (NS3), 6d/r (NS5B), 6o and 6 k (NS5A) exhibit higher immunogenicity than other genotypes, forming more energetically stable complexes with host receptors. These epitopes, compared to those from the same positions but different genotypes, showed binding energies of -144.24 kcal/mol, -85.30 kcal/mol, and - 43 kcal/mol, respectively. Over a 200 ns MD simulation, GT 6b and 6d/r epitopes displayed up to a 40% stronger binding energy with the HLA receptor. These findings suggest that patients infected with GT 6 may experience enhanced T cell responsiveness and broader immunogenicity.

Conclusion: Our study suggests that genotype/subtype-specific polymorphism in HCV may result in altered immune responses by modulating T-cell epitope processing and interaction with HLA receptors. Further experimental studies can be performed to confirm the effect of genotype/subtype-specific polymorphisms on T cell-mediated immune response.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
期刊最新文献
Lactobacillus acidophilus alleviate Salmonella enterica Serovar Typhimurium-induced murine inflammatory/oxidative responses via the p62-Keap1-Nrf2 signaling pathway and cecal microbiota. Editorial: Emerging technologies for viability enumeration of live microorganisms. In silico analysis of the effect of HCV genotype-specific polymorphisms in Core, NS3, NS5A, and NS5B proteins on T-cell epitope processing and presentation. 16S rRNA and metabolomics reveal the key microbes and key metabolites that regulate diarrhea in Holstein male calves. Acute stress triggers sex-dependent rapid alterations in the human small intestine microbiota composition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1