Promoting the design of future indoor environmental to improve air pollution: Based on the analysis of hazardous substances in indoor PM2.5 pollution in cold regions.
{"title":"Promoting the design of future indoor environmental to improve air pollution: Based on the analysis of hazardous substances in indoor PM<sub>2.5</sub> pollution in cold regions.","authors":"Yongbo Cui, Chengliang Fan, Xiaoqing Zhou","doi":"10.1007/s10653-025-02374-3","DOIUrl":null,"url":null,"abstract":"<p><p>People spend about 90% of their day indoors and are at increased risk of exposure to metal elements (MEs), water-soluble ions (WSIs) and polycyclic aromatic hydrocarbons (PAHs) contained in indoor PM<sub>2.5</sub>. Therefore, firstly this study investigated indoor PM<sub>2.5</sub> pollution to explore the distribution characteristics of MEs, WSIs and PAHs. Secondly, the carcinogenic risk of MEs and PAH to the population was analyzed using health risk assessment models. Finally, the sources of MEs and PAHs were identified using statistical analyses. The results of the study show that PM<sub>2.5</sub> concentrations fluctuate between spring and winter, with the most significant fluctuations reaching around 100 µg/m<sup>3</sup> in March and January. Concentrations of most MEs, WSIs and PAHs during the heating season are twice as high as during the non-heating season. The main sources of MEs and PAHs are industrial, coal-fired emission sources, vehicle exhaust and metallurgical chemical emission sources. The non-carcinogenic and carcinogenic risks of metallic elements to the population are mainly due to Co, which contribute up to 80% in both adults and children. The carcinogenicity risk indices of the six monomeric PAHs, BaP, DbA, Bbf, Bkf, Inp and BaA, were greater than 10<sup>-6</sup>, indicating a potential carcinogenic risk.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 3","pages":"63"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02374-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
People spend about 90% of their day indoors and are at increased risk of exposure to metal elements (MEs), water-soluble ions (WSIs) and polycyclic aromatic hydrocarbons (PAHs) contained in indoor PM2.5. Therefore, firstly this study investigated indoor PM2.5 pollution to explore the distribution characteristics of MEs, WSIs and PAHs. Secondly, the carcinogenic risk of MEs and PAH to the population was analyzed using health risk assessment models. Finally, the sources of MEs and PAHs were identified using statistical analyses. The results of the study show that PM2.5 concentrations fluctuate between spring and winter, with the most significant fluctuations reaching around 100 µg/m3 in March and January. Concentrations of most MEs, WSIs and PAHs during the heating season are twice as high as during the non-heating season. The main sources of MEs and PAHs are industrial, coal-fired emission sources, vehicle exhaust and metallurgical chemical emission sources. The non-carcinogenic and carcinogenic risks of metallic elements to the population are mainly due to Co, which contribute up to 80% in both adults and children. The carcinogenicity risk indices of the six monomeric PAHs, BaP, DbA, Bbf, Bkf, Inp and BaA, were greater than 10-6, indicating a potential carcinogenic risk.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.