Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2025-01-29 DOI:10.1002/jbm.b.35536
Erika Soares Bronze-Uhle, Camila Correa da Silva Braga de Melo, Isabela Sanches Pompeo da Silva, Vitor de Toledo Stuani, Victor Hugo Bueno, Daniel Rinaldo, Carlos Alberto de Souza Costa, Paulo Noronha Lisboa Filho, Diana Gabriela Soares
{"title":"Simvastatin-Loaded Chitosan Microspheres as a Biomaterial for Dentin Tissue Engineering","authors":"Erika Soares Bronze-Uhle,&nbsp;Camila Correa da Silva Braga de Melo,&nbsp;Isabela Sanches Pompeo da Silva,&nbsp;Vitor de Toledo Stuani,&nbsp;Victor Hugo Bueno,&nbsp;Daniel Rinaldo,&nbsp;Carlos Alberto de Souza Costa,&nbsp;Paulo Noronha Lisboa Filho,&nbsp;Diana Gabriela Soares","doi":"10.1002/jbm.b.35536","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV–visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%–10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35536","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, chitosan microspheres (MSCH) loaded with different concentrations of simvastatin (2%, 5%, and 10%) were synthesized as a biomaterial for dentin tissue engineering. The microspheres were prepared by emulsion crosslinking method, and simvastatin was incorporated during the process. The microspheres were then physicochemically and morphologically characterized. Scanning electron microscopy and infrared spectroscopy confirmed the spherical morphology of synthesized microspheres and the chemical incorporation of simvastatin into MSCH, respectively. UV–visible absorption confirmed the controlled and continuous release pattern of the drug. To mimic the clinical application in vitro, the microspheres were applied onto three-dimensional (3D) cultures of human dental pulp cells (HDPCs). Cell viability, proliferation, and in situ-mineralized matrix deposition were evaluated. The results indicated no cytotoxic effects for all 3D cultures for all tested biomaterials, with cells being able to proliferate significantly over time. HDPCs showed a significant increase in the deposition of mineralization nodules when 3D cultures were in direct contact with chitosan microspheres in comparison to control; nevertheless, the highest expression was observed for MSCH encapsulated with 5% and 10% simvastatin, which was significantly higher than plain MSCH. Therefore, chitosan microsphere systems loaded with 5%–10% simvastatin provided the development of a controlled release system in bioactive dosages for dentin tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Process-Dependent Variations in the Proliferation of Myoblasts, Fibroblasts and Chondrocytes on Laser-Sintered Polypropylene Gold Nanorods (GNRs): A Golden Nano Compass to Navigate Breast Cancer by Multimodal Imaging Approaches Effects of Nitrogen and Hydrogen Plasma Treatments on a Mg-2Y-1Zn-1Mn Resorbable Alloy Physicochemical Characterization of Hyaluronic Acid-Methylcellulose Semi-Gels for Mitochondria Transplantation Platelet-Rich Plasma Loaded Alginate-Based Injectable Hydrogel for Meniscal Tear Repair: In Vivo Evaluation in Lapine Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1