Tanzeela Ahmad Shah, Aftab Alam, Zainab, Majid Khan, Ahmed A Elhenawy, Amalina Mohd Tajuddin, Muhammad Ayaz, Muhammad Said, Syed Adnan Ali Shah, Ajmal Khan, Abdul Latif, Mumtaz Ali, Ahmed Al-Harrasi, Manzoor Ahmad
{"title":"Copper(II) complexes of 2-hydroxy-1-naphthaldehyde Schiff bases: synthesis, <i>in vitro</i> activity and computational studies.","authors":"Tanzeela Ahmad Shah, Aftab Alam, Zainab, Majid Khan, Ahmed A Elhenawy, Amalina Mohd Tajuddin, Muhammad Ayaz, Muhammad Said, Syed Adnan Ali Shah, Ajmal Khan, Abdul Latif, Mumtaz Ali, Ahmed Al-Harrasi, Manzoor Ahmad","doi":"10.1080/17568919.2025.2458452","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors.</p><p><strong>Methods: </strong>Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity.</p><p><strong>Results: </strong>In the series, compounds 3e, 3c, 2b, and 2c ascribed powerful inhibition ranging from (IC<sub>50</sub> = 3.0 ± 0.7 µM) to (IC<sub>50</sub> = 19.2 ± 0.8 µM). A precise and particular arrangement of atoms is suggested by the triclinic <i>p</i>-1 space group and the existence of a single molecule in an asymmetric unit, which are indispensable for the reactivity as well as the stability of the compounds. The analysis of the Hirshfeld surface provides information about the hydrogen intermolecular and <i>π-π</i> interactions. Based on molecular docking, binding potency increasing by complexation 3a-e compared to ligands 2a-e as well as reference Saccharic acid and uronic isofagomine inhibitor, suggesting that it may be a potent inhibitor of these receptors.</p><p><strong>Conclusion: </strong>The work recognizes latent active compounds for novel β-glucoronidase inhibitors, by further support these may be harnessed for the development of potent drugs.</p>","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":" ","pages":"313-328"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792854/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2025.2458452","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors.
Methods: Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity.
Results: In the series, compounds 3e, 3c, 2b, and 2c ascribed powerful inhibition ranging from (IC50 = 3.0 ± 0.7 µM) to (IC50 = 19.2 ± 0.8 µM). A precise and particular arrangement of atoms is suggested by the triclinic p-1 space group and the existence of a single molecule in an asymmetric unit, which are indispensable for the reactivity as well as the stability of the compounds. The analysis of the Hirshfeld surface provides information about the hydrogen intermolecular and π-π interactions. Based on molecular docking, binding potency increasing by complexation 3a-e compared to ligands 2a-e as well as reference Saccharic acid and uronic isofagomine inhibitor, suggesting that it may be a potent inhibitor of these receptors.
Conclusion: The work recognizes latent active compounds for novel β-glucoronidase inhibitors, by further support these may be harnessed for the development of potent drugs.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.