David Barthélémy, Arnaud Vigneron, Xavier Rousset, Jérome Guitton, Emmanuel Grolleau, Margaux Raffin, Julie Balandier, Gaëlle Lescuyer, Mathilde Bardou, Florence Geiguer, Sébastien Couraud, Claire Bardel, Jean Viallet, Nazim Benzerdjeb, Léa Payen
{"title":"Pharmacological effects of osimertinib on a chicken chorioallantoic membrane xenograft model with the EGFR exon-19-deleted advanced NSCLC mutation.","authors":"David Barthélémy, Arnaud Vigneron, Xavier Rousset, Jérome Guitton, Emmanuel Grolleau, Margaux Raffin, Julie Balandier, Gaëlle Lescuyer, Mathilde Bardou, Florence Geiguer, Sébastien Couraud, Claire Bardel, Jean Viallet, Nazim Benzerdjeb, Léa Payen","doi":"10.1002/2211-5463.13970","DOIUrl":null,"url":null,"abstract":"<p><p>Non-small cell lung cancer (NSCLC) affects 10-50% of patients with epidermal growth factor receptor (EGFR) mutations. Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that radically changes the outcome of patients with tumors bearing EGFR sensitizing or EGFR T790M resistance mutations. However, resistance usually occurs, and new therapeutic combinations need to be explored. The chorioallantoic membrane (CAM) xenograft model is ideal for studying aggressive tumor growth and the responses to complex therapeutic combinations due to its vascularization and complex microenvironment. This study aims to demonstrate the relevance of analyzing a complex therapeutic response to osimertinib treatment, especially through advanced transcriptomic analysis with the CAM model, which has been limited thus far. We engrafted HCC827 cells (EGFR p.E746_A750del) into the CAM model and treated them with various osimertinib doses for 7 days. The study involved supervised multivariate discrimination and ontology analysis of human transcriptional data. We found that CDX tumor growth inversely correlated with osimertinib dosage, with a notable 35% tumor weight reduction at 10 μm. Transcriptomic analysis revealed that osimertinib reduces EGFR pathway activity and its effectors, and dampens chemotaxis, immune recruitment and angiogenesis, indicating that effectiveness extends beyond cellular mechanisms to the tissue level. This was supported by a 15% reduction in blood vessels around the xenograft in osimertinib-treated cases. This study is the first to demonstrate that ontological analysis of transcriptomic data in the CAM model aligns with clinical observations, highlighting the relevance of this methodology for understanding and ameliorating the efficacy of targeted therapy in NSCLC.</p>","PeriodicalId":12187,"journal":{"name":"FEBS Open Bio","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEBS Open Bio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/2211-5463.13970","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-small cell lung cancer (NSCLC) affects 10-50% of patients with epidermal growth factor receptor (EGFR) mutations. Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that radically changes the outcome of patients with tumors bearing EGFR sensitizing or EGFR T790M resistance mutations. However, resistance usually occurs, and new therapeutic combinations need to be explored. The chorioallantoic membrane (CAM) xenograft model is ideal for studying aggressive tumor growth and the responses to complex therapeutic combinations due to its vascularization and complex microenvironment. This study aims to demonstrate the relevance of analyzing a complex therapeutic response to osimertinib treatment, especially through advanced transcriptomic analysis with the CAM model, which has been limited thus far. We engrafted HCC827 cells (EGFR p.E746_A750del) into the CAM model and treated them with various osimertinib doses for 7 days. The study involved supervised multivariate discrimination and ontology analysis of human transcriptional data. We found that CDX tumor growth inversely correlated with osimertinib dosage, with a notable 35% tumor weight reduction at 10 μm. Transcriptomic analysis revealed that osimertinib reduces EGFR pathway activity and its effectors, and dampens chemotaxis, immune recruitment and angiogenesis, indicating that effectiveness extends beyond cellular mechanisms to the tissue level. This was supported by a 15% reduction in blood vessels around the xenograft in osimertinib-treated cases. This study is the first to demonstrate that ontological analysis of transcriptomic data in the CAM model aligns with clinical observations, highlighting the relevance of this methodology for understanding and ameliorating the efficacy of targeted therapy in NSCLC.
期刊介绍:
FEBS Open Bio is an online-only open access journal for the rapid publication of research articles in molecular and cellular life sciences in both health and disease. The journal''s peer review process focuses on the technical soundness of papers, leaving the assessment of their impact and importance to the scientific community.
FEBS Open Bio is owned by the Federation of European Biochemical Societies (FEBS), a not-for-profit organization, and is published on behalf of FEBS by FEBS Press and Wiley. Any income from the journal will be used to support scientists through fellowships, courses, travel grants, prizes and other FEBS initiatives.