Artificial intelligence for segmentation and classification in lumbar spinal stenosis: an overview of current methods.

IF 2.6 3区 医学 Q2 CLINICAL NEUROLOGY European Spine Journal Pub Date : 2025-03-01 Epub Date: 2025-01-30 DOI:10.1007/s00586-025-08672-9
E J A Verheijen, T Kapogiannis, D Munteh, J Chabros, M Staring, T R Smith, C L A Vleggeert-Lankamp
{"title":"Artificial intelligence for segmentation and classification in lumbar spinal stenosis: an overview of current methods.","authors":"E J A Verheijen, T Kapogiannis, D Munteh, J Chabros, M Staring, T R Smith, C L A Vleggeert-Lankamp","doi":"10.1007/s00586-025-08672-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking. Machine Learning (ML) has the potential to aid physicians in this process by automating segmentation and classification of LSS. However, it is unclear what models currently exist to perform these tasks.</p><p><strong>Methods: </strong>A systematic review of literature was performed by searching the Cochrane Library, Embase, Emcare, PubMed, and Web of Science databases for studies describing an ML-based algorithm to perform segmentation or classification of the lumbar spine for LSS. Risk of bias was assessed through an adjusted version of the Newcastle-Ottawa Quality Assessment Scale that was more applicable to ML studies. Qualitative analyses were performed based on type of algorithm (conventional ML or Deep Learning (DL)) and task (segmentation or classification).</p><p><strong>Results: </strong>A total of 27 articles were included of which nine on segmentation, 16 on classification and 2 on both tasks. The majority of studies focused on algorithms for MRI analysis. There was wide variety among the outcome measures used to express model performance. Overall, ML algorithms are able to perform segmentation and classification tasks excellently. DL methods tend to demonstrate better performance than conventional ML models. For segmentation the best performing DL models were U-Net based. For classification U-Net and unspecified CNNs powered the models that performed the best for the majority of outcome metrics. The number of models with external validation was limited.</p><p><strong>Conclusion: </strong>DL models achieve excellent performance for segmentation and classification tasks for LSS, outperforming conventional ML algorithms. However, comparisons between studies are challenging due to the variety in outcome measures and test datasets. Future studies should focus on the segmentation task using DL models and utilize a standardized set of outcome measures and publicly available test dataset to express model performance. In addition, these models need to be externally validated to assess generalizability.</p>","PeriodicalId":12323,"journal":{"name":"European Spine Journal","volume":" ","pages":"1146-1155"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Spine Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00586-025-08672-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking. Machine Learning (ML) has the potential to aid physicians in this process by automating segmentation and classification of LSS. However, it is unclear what models currently exist to perform these tasks.

Methods: A systematic review of literature was performed by searching the Cochrane Library, Embase, Emcare, PubMed, and Web of Science databases for studies describing an ML-based algorithm to perform segmentation or classification of the lumbar spine for LSS. Risk of bias was assessed through an adjusted version of the Newcastle-Ottawa Quality Assessment Scale that was more applicable to ML studies. Qualitative analyses were performed based on type of algorithm (conventional ML or Deep Learning (DL)) and task (segmentation or classification).

Results: A total of 27 articles were included of which nine on segmentation, 16 on classification and 2 on both tasks. The majority of studies focused on algorithms for MRI analysis. There was wide variety among the outcome measures used to express model performance. Overall, ML algorithms are able to perform segmentation and classification tasks excellently. DL methods tend to demonstrate better performance than conventional ML models. For segmentation the best performing DL models were U-Net based. For classification U-Net and unspecified CNNs powered the models that performed the best for the majority of outcome metrics. The number of models with external validation was limited.

Conclusion: DL models achieve excellent performance for segmentation and classification tasks for LSS, outperforming conventional ML algorithms. However, comparisons between studies are challenging due to the variety in outcome measures and test datasets. Future studies should focus on the segmentation task using DL models and utilize a standardized set of outcome measures and publicly available test dataset to express model performance. In addition, these models need to be externally validated to assess generalizability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Spine Journal
European Spine Journal 医学-临床神经学
CiteScore
4.80
自引率
10.70%
发文量
373
审稿时长
2-4 weeks
期刊介绍: "European Spine Journal" is a publication founded in response to the increasing trend toward specialization in spinal surgery and spinal pathology in general. The Journal is devoted to all spine related disciplines, including functional and surgical anatomy of the spine, biomechanics and pathophysiology, diagnostic procedures, and neurology, surgery and outcomes. The aim of "European Spine Journal" is to support the further development of highly innovative spine treatments including but not restricted to surgery and to provide an integrated and balanced view of diagnostic, research and treatment procedures as well as outcomes that will enhance effective collaboration among specialists worldwide. The “European Spine Journal” also participates in education by means of videos, interactive meetings and the endorsement of educative efforts. Official publication of EUROSPINE, The Spine Society of Europe
期刊最新文献
Evaluating surgical interventions for low-grade degenerative lumbar spondylolisthesis: a network meta-analysis of decompression alone, fusion, and dynamic stabilization. Flexibility radiographs in pediatric spine surgery are often used but lack consistency. Sex-based differences in biomechanical function for chronic low back pain and how it relates to pain experience. A Mendelian randomization study to reveal gut-disc axis: causal associations between gut microbiota with intervertebral disc diseases. Efficacy and safety of lumbopelvic fixation in spinal metastasis comparing S2 Alar-iliac screw and conventional iliac screw.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1