First-trimester metabolic profiling of gestational diabetes mellitus: insights into early-onset and late-onset cases compared with healthy controls.

IF 3.9 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Frontiers in Molecular Biosciences Pub Date : 2025-01-15 eCollection Date: 2024-01-01 DOI:10.3389/fmolb.2024.1452312
Danuta Dudzik, Vangeliya Atanasova, Coral Barbas, Jose Luis Bartha
{"title":"First-trimester metabolic profiling of gestational diabetes mellitus: insights into early-onset and late-onset cases compared with healthy controls.","authors":"Danuta Dudzik, Vangeliya Atanasova, Coral Barbas, Jose Luis Bartha","doi":"10.3389/fmolb.2024.1452312","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gestational diabetes mellitus (GDM) is a global health concern with significant short and long-term complications for both mother and baby. Early prediction of GDM, particularly late-onset, is crucial for implementing timely interventions to mitigate adverse outcomes. In this study, we conducted a comprehensive metabolomic analysis to explore potential biomarkers for early GDM prediction.</p><p><strong>Methods: </strong>Plasma samples were collected during the first trimester from 60 women: 20 with early-onset GDM, 20 with late-onset GDM, and 20 with normal glucose tolerance. Using advanced analytical techniques, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS), we profiled over 150 lipid species and central carbon metabolism intermediates.</p><p><strong>Results: </strong>Significant metabolic alterations were observed in both early- and late-onset GDM groups compared to healthy controls, with a specific focus on glycerolipids, fatty acids, and glucose metabolism. Key findings revealed a 4.0-fold increase in TG(44:0), TG(46:0), TG(46:1) with <i>p</i>-values <0.001 and TG(46:2) with 4.7-fold increase and <i>p</i>-value <0.0001 as well as changes in several phospholipids as PC(38:3), PC(40:4) with 1.4-fold increase, <i>p</i> < 0.001 and PE(34:1), PE(34:2) and PE(36:2) with 1.5-fold change, <i>p</i> < 0.001 in late-onset GDM.</p><p><strong>Discussion: </strong>Observed lipid changes highlight disruptions in energy metabolism and inflammatory pathways. It is suggested that lipid profiles with distinct fatty acid chain lengths and degrees of unsaturation can serve as early biomarkers of GDM risk. These findings underline the importance of integrating metabolomic insights with clinical data to develop predictive models for GDM. Such models could enable early risk stratification, allowing for timely dietary, lifestyle, or medical interventions aimed at optimizing glucose regulation and preventing complications such as preeclampsia, macrosomia, and neonatal metabolic disorders. By focusing on metabolic disruptions evident in the first trimester, this approach addresses a critical window for improving maternal and fetal outcomes. Our study demonstrates the value of metabolomics in understanding the metabolic perturbations associated with GDM. Future research is needed to validate these biomarkers in larger cohorts and assess their integration into clinical workflows for personalized pregnancy care.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1452312"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1452312","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Gestational diabetes mellitus (GDM) is a global health concern with significant short and long-term complications for both mother and baby. Early prediction of GDM, particularly late-onset, is crucial for implementing timely interventions to mitigate adverse outcomes. In this study, we conducted a comprehensive metabolomic analysis to explore potential biomarkers for early GDM prediction.

Methods: Plasma samples were collected during the first trimester from 60 women: 20 with early-onset GDM, 20 with late-onset GDM, and 20 with normal glucose tolerance. Using advanced analytical techniques, including liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS), we profiled over 150 lipid species and central carbon metabolism intermediates.

Results: Significant metabolic alterations were observed in both early- and late-onset GDM groups compared to healthy controls, with a specific focus on glycerolipids, fatty acids, and glucose metabolism. Key findings revealed a 4.0-fold increase in TG(44:0), TG(46:0), TG(46:1) with p-values <0.001 and TG(46:2) with 4.7-fold increase and p-value <0.0001 as well as changes in several phospholipids as PC(38:3), PC(40:4) with 1.4-fold increase, p < 0.001 and PE(34:1), PE(34:2) and PE(36:2) with 1.5-fold change, p < 0.001 in late-onset GDM.

Discussion: Observed lipid changes highlight disruptions in energy metabolism and inflammatory pathways. It is suggested that lipid profiles with distinct fatty acid chain lengths and degrees of unsaturation can serve as early biomarkers of GDM risk. These findings underline the importance of integrating metabolomic insights with clinical data to develop predictive models for GDM. Such models could enable early risk stratification, allowing for timely dietary, lifestyle, or medical interventions aimed at optimizing glucose regulation and preventing complications such as preeclampsia, macrosomia, and neonatal metabolic disorders. By focusing on metabolic disruptions evident in the first trimester, this approach addresses a critical window for improving maternal and fetal outcomes. Our study demonstrates the value of metabolomics in understanding the metabolic perturbations associated with GDM. Future research is needed to validate these biomarkers in larger cohorts and assess their integration into clinical workflows for personalized pregnancy care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Molecular Biosciences
Frontiers in Molecular Biosciences Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.20
自引率
4.00%
发文量
1361
审稿时长
14 weeks
期刊介绍: Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology. Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life. In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.
期刊最新文献
Aqueous humor metabolomic profiling identifies a distinct signature in pseudoexfoliation syndrome. Elevated expression of ANTXR1 gene in tumors is a poor prognostic biomarker for patients with bladder cancer. Linking machine learning and biophysical structural features in drug discovery. Retraction: ZFP36 binds with PRC1 to inhibit tumor growth and increase 5-Fu chemosensitivity of hepatocellular carcinoma. Melanoma-derived cytokines and extracellular vesicles are interlinked with macrophage immunosuppression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1