{"title":"Linking machine learning and biophysical structural features in drug discovery.","authors":"Armin Ahmadi, Shivangi Gupta, Vineetha Menon, Jerome Baudry","doi":"10.3389/fmolb.2024.1305272","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Machine learning methods were applied to analyze pharmacophore features derived from four protein-binding sites, aiming to identify key features associated with ligand-specific protein conformations.</p><p><strong>Methods: </strong>Using molecular dynamics simulations, we generated an ensemble of protein conformations to capture the dynamic nature of their binding sites. By leveraging pharmacophore descriptors, the AI/ML framework prioritized features uniquely associated with ligand-selected conformations, enabling a mechanism-driven understanding of binding interactions. This novel approach integrates biophysical insights with machine learning, focusing on pharmacophoric properties such as charge, hydrogen bonding, hydrophobicity, and aromaticity.</p><p><strong>Results: </strong>Results showed significant enrichment of true positive ligands-improving database enrichment by up to 54-fold compared to random selection-demonstrating the robustness of this approach across diverse proteins.</p><p><strong>Conclusion: </strong>Unlike conventional structure-based or ligand-based screening methods, this work emphasizes the role of specific protein conformations in driving ligand binding, making the process highly interpretable and actionable for drug discovery. The key innovation lies in identifying pharmacophore features tied to conformations selected by ligands, offering a predictive framework for optimizing drug candidates. This study illustrates the potential of combining ML and pharmacophoric analysis to develop intuitive and mechanism-driven tools for lead optimization and rational drug design.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"11 ","pages":"1305272"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2024.1305272","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Machine learning methods were applied to analyze pharmacophore features derived from four protein-binding sites, aiming to identify key features associated with ligand-specific protein conformations.
Methods: Using molecular dynamics simulations, we generated an ensemble of protein conformations to capture the dynamic nature of their binding sites. By leveraging pharmacophore descriptors, the AI/ML framework prioritized features uniquely associated with ligand-selected conformations, enabling a mechanism-driven understanding of binding interactions. This novel approach integrates biophysical insights with machine learning, focusing on pharmacophoric properties such as charge, hydrogen bonding, hydrophobicity, and aromaticity.
Results: Results showed significant enrichment of true positive ligands-improving database enrichment by up to 54-fold compared to random selection-demonstrating the robustness of this approach across diverse proteins.
Conclusion: Unlike conventional structure-based or ligand-based screening methods, this work emphasizes the role of specific protein conformations in driving ligand binding, making the process highly interpretable and actionable for drug discovery. The key innovation lies in identifying pharmacophore features tied to conformations selected by ligands, offering a predictive framework for optimizing drug candidates. This study illustrates the potential of combining ML and pharmacophoric analysis to develop intuitive and mechanism-driven tools for lead optimization and rational drug design.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.