Development and validation of an explainable machine learning prediction model of hemorrhagic transformation after intravenous thrombolysis in stroke.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY Frontiers in Neurology Pub Date : 2025-01-15 eCollection Date: 2024-01-01 DOI:10.3389/fneur.2024.1446250
Yanan Lin, Yan Li, Yayin Luo, Jie Han
{"title":"Development and validation of an explainable machine learning prediction model of hemorrhagic transformation after intravenous thrombolysis in stroke.","authors":"Yanan Lin, Yan Li, Yayin Luo, Jie Han","doi":"10.3389/fneur.2024.1446250","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To develop and validate an explainable machine learning (ML) model predicting the risk of hemorrhagic transformation (HT) after intravenous thrombolysis.</p><p><strong>Methods: </strong>We retrospectively enrolled patients who received intravenous tissue plasminogen activator (IV-tPA) thrombolysis within 4.5 h after symptom onset to form the original modeling cohort. HT was defined as any hemorrhage on head CT scan completed within 48 h after IV-tPA administration. We utilized the Random Forest (RF), Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes (GauNB) algorithms to develop ML-HT models. The models' predictive performance was evaluated using confusion matrix (including accuracy, precision, recall, and F1 score), and discriminative analysis (area under the receiver-operating-characteristic curve, ROC-AUC) in the original cohort, followed by validation in an independent external cohort. The models' explainability was assessed using SHapley Additive exPlanations (SHAP) global feature plot, SHAP Summary Plot, and Partial Dependence Plot.</p><p><strong>Results: </strong>A total of 1,007 patients were included in the original modeling cohort, with an HT incidence of 8.94%. The RF-based ML-HT model showed metrics of 0.874 (accuracy), 0.972 (precision), 0.890 (recall), 0.929 (F1 score); with ROC-AUC of 0.7847 in the original cohort and 0.7119 in the external validation cohort. The MLP model showed 0.878, 0.967, 0.989, 0.978, 0.7710, and 0.6768, respectively. The AdaBoost model showed 0.907, 0.967, 0.989, 0.978, 0.7798, and 0.6606, respectively. The GauNB model showed 0.848, 0.983, 0.598, 0.716, 0.6953, and 0.6289, respectively. The explainable analysis of the RF-based ML model indicated that the National Institute of Health Stroke Scale (NIHSS) score, age, platelet count, and atrial fibrillation were the primary determinants for HT following IV-tPA thrombolysis.</p><p><strong>Conclusion: </strong>The RF-based explainable ML model demonstrated promising predictive ability for estimating the risk of HT after IV-tPA thrombolysis and may have the potential to assist the clinical decision-making in emergency settings.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"15 ","pages":"1446250"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775651/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2024.1446250","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To develop and validate an explainable machine learning (ML) model predicting the risk of hemorrhagic transformation (HT) after intravenous thrombolysis.

Methods: We retrospectively enrolled patients who received intravenous tissue plasminogen activator (IV-tPA) thrombolysis within 4.5 h after symptom onset to form the original modeling cohort. HT was defined as any hemorrhage on head CT scan completed within 48 h after IV-tPA administration. We utilized the Random Forest (RF), Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes (GauNB) algorithms to develop ML-HT models. The models' predictive performance was evaluated using confusion matrix (including accuracy, precision, recall, and F1 score), and discriminative analysis (area under the receiver-operating-characteristic curve, ROC-AUC) in the original cohort, followed by validation in an independent external cohort. The models' explainability was assessed using SHapley Additive exPlanations (SHAP) global feature plot, SHAP Summary Plot, and Partial Dependence Plot.

Results: A total of 1,007 patients were included in the original modeling cohort, with an HT incidence of 8.94%. The RF-based ML-HT model showed metrics of 0.874 (accuracy), 0.972 (precision), 0.890 (recall), 0.929 (F1 score); with ROC-AUC of 0.7847 in the original cohort and 0.7119 in the external validation cohort. The MLP model showed 0.878, 0.967, 0.989, 0.978, 0.7710, and 0.6768, respectively. The AdaBoost model showed 0.907, 0.967, 0.989, 0.978, 0.7798, and 0.6606, respectively. The GauNB model showed 0.848, 0.983, 0.598, 0.716, 0.6953, and 0.6289, respectively. The explainable analysis of the RF-based ML model indicated that the National Institute of Health Stroke Scale (NIHSS) score, age, platelet count, and atrial fibrillation were the primary determinants for HT following IV-tPA thrombolysis.

Conclusion: The RF-based explainable ML model demonstrated promising predictive ability for estimating the risk of HT after IV-tPA thrombolysis and may have the potential to assist the clinical decision-making in emergency settings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
期刊最新文献
Editorial: Neural correlates of connected speech indices in acquired neurological disorders. Enhancing ALS disease management: exploring integrated user value through online communities evidence. Use of amantadine in traumatic brain injury: an updated meta-analysis of randomized controlled trials. Development and validation of a diagnostic model for migraine without aura in inpatients. Editorial: Translational neuroeconomic approach: from economic decision making to neuropsychological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1