Development and validation of a diagnostic model for migraine without aura in inpatients.

IF 2.7 3区 医学 Q2 CLINICAL NEUROLOGY Frontiers in Neurology Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.3389/fneur.2025.1511252
Zhu-Hong Chen, Guan Yang, Chi Zhang, Dan Su, Yu-Ting Li, Yu-Xuan Shang, Wei Zhang, Wen Wang
{"title":"Development and validation of a diagnostic model for migraine without aura in inpatients.","authors":"Zhu-Hong Chen, Guan Yang, Chi Zhang, Dan Su, Yu-Ting Li, Yu-Xuan Shang, Wei Zhang, Wen Wang","doi":"10.3389/fneur.2025.1511252","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to develop and validate a robust predictive model for accurately identifying migraine without aura (MWoA) individuals from migraine patients.</p><p><strong>Methods: </strong>We recruited 637 migraine patients, randomizing them into training and validation cohorts. Participant's medical data were collected such as demographic data (age, gender, self-reported headache characteristics) and clinical details including symptoms, triggers, and comorbidities. The model stability, which was developed using multivariable logistic regression, was tested by the internal validation cohort. Model efficacy was evaluated using the area under the receiver operating characteristic curve (AUC), alongside with nomogram, calibration curve, and decision curve analysis (DCA).</p><p><strong>Results: </strong>The study included 477 females (average age 46.62 ± 15.64) and 160 males (average age 39.78 ± 19.53). A total of 397 individuals met the criteria for MWoA. Key predictors in the regression model included patent foramen ovale (PFO) (<i>OR</i> = 2.30, <i>p</i> = 0.01), blurred vision (<i>OR</i> = 0.40, <i>p</i> = 0.001), dizziness (<i>OR</i> = 0.16, <i>p</i> < 0.01), and anxiety/depression (<i>OR</i> = 0.41, <i>p</i> = 0.02). Common symptoms like nausea (<i>OR</i> = 0.79, <i>p</i> = 0.43) and vomiting (<i>OR</i> = 0.64, <i>p</i> = 0.17) were not statistically significant predictors for MWoA. The AUC values were 79.1% and 82.8% in the training and validation cohorts, respectively, with good calibration in both.</p><p><strong>Conclusion: </strong>The predictive model developed and validated in this study demonstrates significant efficacy in identifying MWoA. Our findings highlight PFO as a potential key risk factor, underscoring its importance for early prevention, screening, and diagnosis of MWoA.</p>","PeriodicalId":12575,"journal":{"name":"Frontiers in Neurology","volume":"16 ","pages":"1511252"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790451/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fneur.2025.1511252","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: This study aimed to develop and validate a robust predictive model for accurately identifying migraine without aura (MWoA) individuals from migraine patients.

Methods: We recruited 637 migraine patients, randomizing them into training and validation cohorts. Participant's medical data were collected such as demographic data (age, gender, self-reported headache characteristics) and clinical details including symptoms, triggers, and comorbidities. The model stability, which was developed using multivariable logistic regression, was tested by the internal validation cohort. Model efficacy was evaluated using the area under the receiver operating characteristic curve (AUC), alongside with nomogram, calibration curve, and decision curve analysis (DCA).

Results: The study included 477 females (average age 46.62 ± 15.64) and 160 males (average age 39.78 ± 19.53). A total of 397 individuals met the criteria for MWoA. Key predictors in the regression model included patent foramen ovale (PFO) (OR = 2.30, p = 0.01), blurred vision (OR = 0.40, p = 0.001), dizziness (OR = 0.16, p < 0.01), and anxiety/depression (OR = 0.41, p = 0.02). Common symptoms like nausea (OR = 0.79, p = 0.43) and vomiting (OR = 0.64, p = 0.17) were not statistically significant predictors for MWoA. The AUC values were 79.1% and 82.8% in the training and validation cohorts, respectively, with good calibration in both.

Conclusion: The predictive model developed and validated in this study demonstrates significant efficacy in identifying MWoA. Our findings highlight PFO as a potential key risk factor, underscoring its importance for early prevention, screening, and diagnosis of MWoA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Neurology
Frontiers in Neurology CLINICAL NEUROLOGYNEUROSCIENCES -NEUROSCIENCES
CiteScore
4.90
自引率
8.80%
发文量
2792
审稿时长
14 weeks
期刊介绍: The section Stroke aims to quickly and accurately publish important experimental, translational and clinical studies, and reviews that contribute to the knowledge of stroke, its causes, manifestations, diagnosis, and management.
期刊最新文献
Editorial: Neural correlates of connected speech indices in acquired neurological disorders. Enhancing ALS disease management: exploring integrated user value through online communities evidence. Use of amantadine in traumatic brain injury: an updated meta-analysis of randomized controlled trials. Development and validation of a diagnostic model for migraine without aura in inpatients. Editorial: Translational neuroeconomic approach: from economic decision making to neuropsychological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1