{"title":"Mechanistic studies of chondroitin sulfate/dermatan sulfate isolated from freshwater fish discards on osteogenesis in MC3T3-E1 cells.","authors":"Chandra Gavva, Kunal Sharan, Nandini Chilkunda","doi":"10.1007/s10719-025-10178-x","DOIUrl":null,"url":null,"abstract":"<p><p>Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail. Earlier, we showed that exogenous GAG can bring about osteogenesis in pre-osteoblast cells. In the present study, we have elucidated the mechanism of action of exogenous GAGs, especially of the chondroitin sulfate/dermatan sulfate (CS/DS) class on osteogenesis. GAGs were immobilized, and osteoblast differentiation was evaluated in MC3T3-E1 cells. Results indicated that GAGs supported osteoblast differentiation by promoting collagen production, extracellular matrix formation, and subsequent mineralization. We elucidated the mechanisms underlying these effects by assessing the key signaling molecules involved in osteogenesis in response to exogenous CS/DS with/without BMP2. CS/DS alone significantly increased pERK1/2 and ATF4 expression levels differentially in a time-dependent manner without significant effects on BMP2, RUNX2, and pSMAD5 protein expression. On the other hand, CS/DS, in the presence of BMP2, differentially increased BMP2, pSMAD5, pERK1/2, RUNX2, and ATF4 expression levels at various time points. Collectively, these results strongly suggest that CS/DS can promote osteogenesis, and in the presence of BMP2, it could promote SMAD-mediated ERK-dependent osteogenesis.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-025-10178-x","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail. Earlier, we showed that exogenous GAG can bring about osteogenesis in pre-osteoblast cells. In the present study, we have elucidated the mechanism of action of exogenous GAGs, especially of the chondroitin sulfate/dermatan sulfate (CS/DS) class on osteogenesis. GAGs were immobilized, and osteoblast differentiation was evaluated in MC3T3-E1 cells. Results indicated that GAGs supported osteoblast differentiation by promoting collagen production, extracellular matrix formation, and subsequent mineralization. We elucidated the mechanisms underlying these effects by assessing the key signaling molecules involved in osteogenesis in response to exogenous CS/DS with/without BMP2. CS/DS alone significantly increased pERK1/2 and ATF4 expression levels differentially in a time-dependent manner without significant effects on BMP2, RUNX2, and pSMAD5 protein expression. On the other hand, CS/DS, in the presence of BMP2, differentially increased BMP2, pSMAD5, pERK1/2, RUNX2, and ATF4 expression levels at various time points. Collectively, these results strongly suggest that CS/DS can promote osteogenesis, and in the presence of BMP2, it could promote SMAD-mediated ERK-dependent osteogenesis.
期刊介绍:
Glycoconjugate Journal publishes articles and reviews on all areas concerned with:
function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics.
Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.