RGB sensor integrated into unmanned aerial vehicle for monitoring cyanobacterial density in reservoirs.

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Integrated Environmental Assessment and Management Pub Date : 2025-01-01 DOI:10.1093/inteam/vjae003
Will Jones Moura Soares da Silva, Alex Bruno da Silva Farias, Janiele França Nery, Emanuel Araújo Silva, Renato José Reis Molica
{"title":"RGB sensor integrated into unmanned aerial vehicle for monitoring cyanobacterial density in reservoirs.","authors":"Will Jones Moura Soares da Silva, Alex Bruno da Silva Farias, Janiele França Nery, Emanuel Araújo Silva, Renato José Reis Molica","doi":"10.1093/inteam/vjae003","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of cyanobacteria has become a significant water management challenge due to the increasing eutrophication of water supply reservoirs. Cyanobacterial blooms thrive on elevated nutrient concentrations and form extensive green mats, disrupting the local ecosystem. Furthermore, many cyanobacterial species can produce toxins that are lethal to vertebrates called cyanotoxins. Traditional monitoring methods are inefficient for assessing water quality in reservoirs as a whole, given that sampling is only carried out in the catchment area for the public water supply, which exposes the population to the risk of contamination due to the multiple uses of these reservoirs. Therefore, novel monitoring methods supported by recent technological advances, such as the use of unmanned aerial vehicles (UAVs), are being tested for their effectiveness in monitoring cyanobacterial densities in aquatic ecosystems. This study analyzed UAV images of two water supply reservoirs to assess the effectiveness in monitoring cyanobacterial density. The UAVs were equipped with RGB sensors and flew over the study areas on the same day and at the same locations as water sampling performed for the determination of phytoplankton density, biovolume and chlorophyll-a. The phytoplankton community was dominated by cyanobacteria in both reservoirs. High coefficients of determination were obtained in the predictive models for chlorophyll-a concentration (r2 = 0.92), total phytoplankton and cyanobacterial densities (r2 = 0.89 and r2 = 0.97, respectively), and total phytoplankton and cyanobacterial biovolumes (r2 = 0.96 for both). Applying the predictive models to the orthomosaics generated from the UAV RGB images enabled the visualization of the spatial distribution of the phytoplankton and cyanobacterial biomass through distribution maps. This method has potential application in the management of water bodies that are crucial to the public water supply.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":"21 1","pages":"131-140"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjae003","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of cyanobacteria has become a significant water management challenge due to the increasing eutrophication of water supply reservoirs. Cyanobacterial blooms thrive on elevated nutrient concentrations and form extensive green mats, disrupting the local ecosystem. Furthermore, many cyanobacterial species can produce toxins that are lethal to vertebrates called cyanotoxins. Traditional monitoring methods are inefficient for assessing water quality in reservoirs as a whole, given that sampling is only carried out in the catchment area for the public water supply, which exposes the population to the risk of contamination due to the multiple uses of these reservoirs. Therefore, novel monitoring methods supported by recent technological advances, such as the use of unmanned aerial vehicles (UAVs), are being tested for their effectiveness in monitoring cyanobacterial densities in aquatic ecosystems. This study analyzed UAV images of two water supply reservoirs to assess the effectiveness in monitoring cyanobacterial density. The UAVs were equipped with RGB sensors and flew over the study areas on the same day and at the same locations as water sampling performed for the determination of phytoplankton density, biovolume and chlorophyll-a. The phytoplankton community was dominated by cyanobacteria in both reservoirs. High coefficients of determination were obtained in the predictive models for chlorophyll-a concentration (r2 = 0.92), total phytoplankton and cyanobacterial densities (r2 = 0.89 and r2 = 0.97, respectively), and total phytoplankton and cyanobacterial biovolumes (r2 = 0.96 for both). Applying the predictive models to the orthomosaics generated from the UAV RGB images enabled the visualization of the spatial distribution of the phytoplankton and cyanobacterial biomass through distribution maps. This method has potential application in the management of water bodies that are crucial to the public water supply.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Integrated Environmental Assessment and Management
Integrated Environmental Assessment and Management ENVIRONMENTAL SCIENCESTOXICOLOGY&nbs-TOXICOLOGY
CiteScore
5.90
自引率
6.50%
发文量
156
期刊介绍: Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas: Science-informed regulation, policy, and decision making Health and ecological risk and impact assessment Restoration and management of damaged ecosystems Sustaining ecosystems Managing large-scale environmental change Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society: Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.
期刊最新文献
Addressing water scarcity to support climate resilience and human health. Application of artificial intelligence for nutrient estimation in surface water bodies of basins with intensive agriculture. Metal-rich lacustrine sediments from legacy mining perpetuate copper exposure to aquatic-riparian food webs. Rhamnolipid: nature-based solution for the removal of microplastics from the aquatic environment. Examination of spatial and temporal evolution characteristics of carbon emission and influencing factors in territorial spatial functional areas: a case study of the mountainous city Chongqing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1