Tolerance to NSAIDs in Actinobacteria From a Mexican Volcano Crater: Genomics and Bioremediation Potential.

IF 3.5 4区 生物学 Q2 MICROBIOLOGY Journal of Basic Microbiology Pub Date : 2025-01-29 DOI:10.1002/jobm.202400772
Claudia Soria-Camargo, Lorna Catalina Can-Ubando, Gauddy Lizeth Manzanares-Leal, Ayixon Sánchez-Reyes, Sonia Dávila-Ramos, Ramón Alberto Batista-García, Ninfa Ramírez-Durán
{"title":"Tolerance to NSAIDs in Actinobacteria From a Mexican Volcano Crater: Genomics and Bioremediation Potential.","authors":"Claudia Soria-Camargo, Lorna Catalina Can-Ubando, Gauddy Lizeth Manzanares-Leal, Ayixon Sánchez-Reyes, Sonia Dávila-Ramos, Ramón Alberto Batista-García, Ninfa Ramírez-Durán","doi":"10.1002/jobm.202400772","DOIUrl":null,"url":null,"abstract":"<p><p>Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging contaminants that pose significant health and environmental risks due to their persistence, including their presence in drinking water. Bioremediation, particularly through microorganisms such as actinobacteria, offers a sustainable approach to mitigate these pollutants. Actinobacteria from poly-extreme environments exhibit unique genetic and metabolic adaptations, enabling resistance to and degradation of various contaminants. This study aimed to evaluate the tolerance of actinobacteria to NSAIDs and conduct a genomic analysis of a selected strain. Actinobacteria were isolated from the crater of the Chichonal volcano [Chiapas, Mexico), resulting in 16 isolates. Among these, Micrococcus luteus P8SUE1, Micrococcus yunnanensis P9AGU1, and Kocuria rhizophila P1AGU3 demonstrated tolerance to diclofenac, ibuprofen, and paracetamol at concentrations of 1 ppm, 10 ppm, and 100 ppm, respectively. Whole-genome sequencing of M. yunnanensis P9AGU1 identified genes linked to the degradation of aromatic compounds and adaptations to extreme environmental conditions, highlighting its potential for bioremediation applications.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400772"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400772","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging contaminants that pose significant health and environmental risks due to their persistence, including their presence in drinking water. Bioremediation, particularly through microorganisms such as actinobacteria, offers a sustainable approach to mitigate these pollutants. Actinobacteria from poly-extreme environments exhibit unique genetic and metabolic adaptations, enabling resistance to and degradation of various contaminants. This study aimed to evaluate the tolerance of actinobacteria to NSAIDs and conduct a genomic analysis of a selected strain. Actinobacteria were isolated from the crater of the Chichonal volcano [Chiapas, Mexico), resulting in 16 isolates. Among these, Micrococcus luteus P8SUE1, Micrococcus yunnanensis P9AGU1, and Kocuria rhizophila P1AGU3 demonstrated tolerance to diclofenac, ibuprofen, and paracetamol at concentrations of 1 ppm, 10 ppm, and 100 ppm, respectively. Whole-genome sequencing of M. yunnanensis P9AGU1 identified genes linked to the degradation of aromatic compounds and adaptations to extreme environmental conditions, highlighting its potential for bioremediation applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
期刊最新文献
Comparative Effects of Bacillus strains applied Via Seed Biopriming and Soil Drenching Applications on the Morpho-Physiological and Transcriptional Aspects of Cotton. Carbon-Based Nanomaterials Alter the Behavior and Gene Expression Patterns of Bacteria. Efficacy and Ultrastructural Impact of Metarhizium anisopliae and Metarhizium robertsii on Myllocerus subfasciatus. Stress-Induced Response and Adaptation Mechanisms in Bacillus licheniformis PSKA1 Exposed With Abiotic and Antibiotic Stresses. Adaptive Development of Soil Bacterial Communities to Ecological Processes Caused by Mining Subsidence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1