{"title":"Tolerance to NSAIDs in Actinobacteria From a Mexican Volcano Crater: Genomics and Bioremediation Potential.","authors":"Claudia Soria-Camargo, Lorna Catalina Can-Ubando, Gauddy Lizeth Manzanares-Leal, Ayixon Sánchez-Reyes, Sonia Dávila-Ramos, Ramón Alberto Batista-García, Ninfa Ramírez-Durán","doi":"10.1002/jobm.202400772","DOIUrl":null,"url":null,"abstract":"<p><p>Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging contaminants that pose significant health and environmental risks due to their persistence, including their presence in drinking water. Bioremediation, particularly through microorganisms such as actinobacteria, offers a sustainable approach to mitigate these pollutants. Actinobacteria from poly-extreme environments exhibit unique genetic and metabolic adaptations, enabling resistance to and degradation of various contaminants. This study aimed to evaluate the tolerance of actinobacteria to NSAIDs and conduct a genomic analysis of a selected strain. Actinobacteria were isolated from the crater of the Chichonal volcano [Chiapas, Mexico), resulting in 16 isolates. Among these, Micrococcus luteus P8SUE1, Micrococcus yunnanensis P9AGU1, and Kocuria rhizophila P1AGU3 demonstrated tolerance to diclofenac, ibuprofen, and paracetamol at concentrations of 1 ppm, 10 ppm, and 100 ppm, respectively. Whole-genome sequencing of M. yunnanensis P9AGU1 identified genes linked to the degradation of aromatic compounds and adaptations to extreme environmental conditions, highlighting its potential for bioremediation applications.</p>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":" ","pages":"e2400772"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jobm.202400772","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging contaminants that pose significant health and environmental risks due to their persistence, including their presence in drinking water. Bioremediation, particularly through microorganisms such as actinobacteria, offers a sustainable approach to mitigate these pollutants. Actinobacteria from poly-extreme environments exhibit unique genetic and metabolic adaptations, enabling resistance to and degradation of various contaminants. This study aimed to evaluate the tolerance of actinobacteria to NSAIDs and conduct a genomic analysis of a selected strain. Actinobacteria were isolated from the crater of the Chichonal volcano [Chiapas, Mexico), resulting in 16 isolates. Among these, Micrococcus luteus P8SUE1, Micrococcus yunnanensis P9AGU1, and Kocuria rhizophila P1AGU3 demonstrated tolerance to diclofenac, ibuprofen, and paracetamol at concentrations of 1 ppm, 10 ppm, and 100 ppm, respectively. Whole-genome sequencing of M. yunnanensis P9AGU1 identified genes linked to the degradation of aromatic compounds and adaptations to extreme environmental conditions, highlighting its potential for bioremediation applications.
期刊介绍:
The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions.
Papers published deal with:
microbial interactions (pathogenic, mutualistic, environmental),
ecology,
physiology,
genetics and cell biology/development,
new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications)
novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).