Suppressive Mechanism of Benzalkonium Chloride-Bactericidal Activity in the Presence of Oil.

IF 1.6 4区 农林科学 Q3 CHEMISTRY, APPLIED Journal of oleo science Pub Date : 2025-01-01 DOI:10.5650/jos.ess24283
Noboru Ohyagi, Yomi Watanabe, Yoshiko Sugita-Konishi, Asao Yamauchi, Hirofumi Sato, Mariko Mochizuki
{"title":"Suppressive Mechanism of Benzalkonium Chloride-Bactericidal Activity in the Presence of Oil.","authors":"Noboru Ohyagi, Yomi Watanabe, Yoshiko Sugita-Konishi, Asao Yamauchi, Hirofumi Sato, Mariko Mochizuki","doi":"10.5650/jos.ess24283","DOIUrl":null,"url":null,"abstract":"<p><p>Cleaning and sterilization are critical Prerequisite Programs in sanitation management based on HACCP. Most food factories clean and sanitize equipment daily after production using detergents containing benzalkonium chloride (BAC). However, in factories that produce oil and fat-rich foods, it has been discovered that microbes can persist on production equipment. Insufficient cleaning protocols may result in secondary contamination of the final products. Unfortunately, there are limited cleaning agents available that are effective in sterilizing microbes in the presence of oil. Moreover, there is a lack of research on the bactericidal mechanisms and bacterial dynamics in oily environments. In this study, we aimed to reduce bacterial contamination on equipment in such factories by hypothesizing that oil diminishes BAC's bactericidal activity. We conducted lab-scale experiments simulating actual factory conditions to examine the effects of oil on BAC's efficacy. Additionally, we investigated the effect of nonionic surfactants, which are known to enhance BAC's bactericidal activity in oil-free conditions, in the presence of oil. The results showed that BAC's bactericidal activity was significantly reduced in the presence of oil. However, the activity was restored by adding an appropriate amount of secondary alcohol ethoxylate (sec-AE). Microscopic observations revealed that bacteria tended to accumulate at the water/oil interface, suggesting that the oil interface might inhibit BAC from effectively attacking the bacteria. The addition of sec-AE appeared to disperse the bacteria into the water layer, thus restoring BAC's bactericidal activity in the presence of oil. These findings are crucial for improving daily cleaning and sterilization processes in food factories operating in high-oil environments to prevent secondary contamination and enhance food safety.</p>","PeriodicalId":16626,"journal":{"name":"Journal of oleo science","volume":"74 2","pages":"173-185"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of oleo science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5650/jos.ess24283","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Cleaning and sterilization are critical Prerequisite Programs in sanitation management based on HACCP. Most food factories clean and sanitize equipment daily after production using detergents containing benzalkonium chloride (BAC). However, in factories that produce oil and fat-rich foods, it has been discovered that microbes can persist on production equipment. Insufficient cleaning protocols may result in secondary contamination of the final products. Unfortunately, there are limited cleaning agents available that are effective in sterilizing microbes in the presence of oil. Moreover, there is a lack of research on the bactericidal mechanisms and bacterial dynamics in oily environments. In this study, we aimed to reduce bacterial contamination on equipment in such factories by hypothesizing that oil diminishes BAC's bactericidal activity. We conducted lab-scale experiments simulating actual factory conditions to examine the effects of oil on BAC's efficacy. Additionally, we investigated the effect of nonionic surfactants, which are known to enhance BAC's bactericidal activity in oil-free conditions, in the presence of oil. The results showed that BAC's bactericidal activity was significantly reduced in the presence of oil. However, the activity was restored by adding an appropriate amount of secondary alcohol ethoxylate (sec-AE). Microscopic observations revealed that bacteria tended to accumulate at the water/oil interface, suggesting that the oil interface might inhibit BAC from effectively attacking the bacteria. The addition of sec-AE appeared to disperse the bacteria into the water layer, thus restoring BAC's bactericidal activity in the presence of oil. These findings are crucial for improving daily cleaning and sterilization processes in food factories operating in high-oil environments to prevent secondary contamination and enhance food safety.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of oleo science
Journal of oleo science CHEMISTRY, APPLIED-FOOD SCIENCE & TECHNOLOGY
CiteScore
3.20
自引率
6.70%
发文量
173
审稿时长
3 months
期刊介绍: The J. Oleo Sci. publishes original researches of high quality on chemistry, biochemistry and science of fats and oils such as related food products, detergents, natural products, petroleum products, lipids and related proteins and sugars. The Journal also encourages papers on chemistry and/or biochemistry as a major component combined with biological/ sensory/nutritional/toxicological evaluation related to agriculture and/or food.
期刊最新文献
CONTENTS Volume 74, Issue 1, January 2025. Effect of Cholic Acid Salt and Its Mixed Micelles on the Morphology of Giant Unilamellar Vesicles (GUV). A Straightforward Synthesis of Pinocembrin. Antibiofilm and Antiquorum Sensing Potential of Pheretima posthum. Effects of Commonly Used Vegetable Oils on Skin Barrier Function and Staphylococcus aureus Biofilm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1