Identification of Intracranial Germ Cell Tumors Based on Facial Photos: Exploratory Study on the Use of Deep Learning for Software Development.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Internet Research Pub Date : 2025-01-30 DOI:10.2196/58760
Yanong Li, Yixuan He, Yawei Liu, Bingchen Wang, Bo Li, Xiaoguang Qiu
{"title":"Identification of Intracranial Germ Cell Tumors Based on Facial Photos: Exploratory Study on the Use of Deep Learning for Software Development.","authors":"Yanong Li, Yixuan He, Yawei Liu, Bingchen Wang, Bo Li, Xiaoguang Qiu","doi":"10.2196/58760","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.</p><p><strong>Objective: </strong>This study aimed to investigate the application of facial recognition technology in the early detection of iGCTs in children and adolescents. Early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.</p><p><strong>Methods: </strong>A multicenter, phased approach was adopted for the development and validation of a deep learning model, GVisageNet, dedicated to the screening of midline brain tumors from normal controls (NCs) and iGCTs from other midline brain tumors. The study comprised the collection and division of datasets into training (n=847, iGCTs=358, NCs=300, other midline brain tumors=189) and testing (n=212, iGCTs=79, NCs=70, other midline brain tumors=63), with an additional independent validation dataset (n=336, iGCTs=130, NCs=100, other midline brain tumors=106) sourced from 4 medical institutions. A regression model using clinically relevant, statistically significant data was developed and combined with GVisageNet outputs to create a hybrid model. This integration sought to assess the incremental value of clinical data. The model's predictive mechanisms were explored through correlation analyses with endocrine indicators and stratified evaluations based on the degree of hypothalamic-pituitary-target axis damage. Performance metrics included area under the curve (AUC), accuracy, sensitivity, and specificity.</p><p><strong>Results: </strong>On the independent validation dataset, GVisageNet achieved an AUC of 0.938 (P<.01) in distinguishing midline brain tumors from NCs. Further, GVisageNet demonstrated significant diagnostic capability in distinguishing iGCTs from the other midline brain tumors, achieving an AUC of 0.739, which is superior to the regression model alone (AUC=0.632, P<.001) but less than the hybrid model (AUC=0.789, P=.04). Significant correlations were found between the GVisageNet's outputs and 7 endocrine indicators. Performance varied with hypothalamic-pituitary-target axis damage, indicating a further understanding of the working mechanism of GVisageNet.</p><p><strong>Conclusions: </strong>GVisageNet, capable of high accuracy both independently and with clinical data, shows substantial potential for early iGCTs detection, highlighting the importance of combining deep learning with clinical insights for personalized health care.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e58760"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/58760","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Primary intracranial germ cell tumors (iGCTs) are highly malignant brain tumors that predominantly occur in children and adolescents, with an incidence rate ranking third among primary brain tumors in East Asia (8%-15%). Due to their insidious onset and impact on critical functional areas of the brain, these tumors often result in irreversible abnormalities in growth and development, as well as cognitive and motor impairments in affected children. Therefore, early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

Objective: This study aimed to investigate the application of facial recognition technology in the early detection of iGCTs in children and adolescents. Early diagnosis through advanced screening techniques is vital for improving patient outcomes and quality of life.

Methods: A multicenter, phased approach was adopted for the development and validation of a deep learning model, GVisageNet, dedicated to the screening of midline brain tumors from normal controls (NCs) and iGCTs from other midline brain tumors. The study comprised the collection and division of datasets into training (n=847, iGCTs=358, NCs=300, other midline brain tumors=189) and testing (n=212, iGCTs=79, NCs=70, other midline brain tumors=63), with an additional independent validation dataset (n=336, iGCTs=130, NCs=100, other midline brain tumors=106) sourced from 4 medical institutions. A regression model using clinically relevant, statistically significant data was developed and combined with GVisageNet outputs to create a hybrid model. This integration sought to assess the incremental value of clinical data. The model's predictive mechanisms were explored through correlation analyses with endocrine indicators and stratified evaluations based on the degree of hypothalamic-pituitary-target axis damage. Performance metrics included area under the curve (AUC), accuracy, sensitivity, and specificity.

Results: On the independent validation dataset, GVisageNet achieved an AUC of 0.938 (P<.01) in distinguishing midline brain tumors from NCs. Further, GVisageNet demonstrated significant diagnostic capability in distinguishing iGCTs from the other midline brain tumors, achieving an AUC of 0.739, which is superior to the regression model alone (AUC=0.632, P<.001) but less than the hybrid model (AUC=0.789, P=.04). Significant correlations were found between the GVisageNet's outputs and 7 endocrine indicators. Performance varied with hypothalamic-pituitary-target axis damage, indicating a further understanding of the working mechanism of GVisageNet.

Conclusions: GVisageNet, capable of high accuracy both independently and with clinical data, shows substantial potential for early iGCTs detection, highlighting the importance of combining deep learning with clinical insights for personalized health care.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
期刊最新文献
Spatiotemporal Characteristics and Influential Factors of Electronic Cigarette Web-Based Attention in Mainland China: Time Series Observational Study. A Hierarchical Framework for Selecting Reference Measures for the Analytical Validation of Sensor-Based Digital Health Technologies. Description of Weight-Related Content and Recommended Dietary Behaviors for Weight Loss Frequently Reposted on X (Twitter) in English and Japanese: Content Analysis. Effectiveness of Continuous Glucose Monitoring on Short-Term, In-Hospital Mortality Among Frail and Critically Ill Patients With COVID-19: Randomized Controlled Trial. Good-Quality mHealth Apps for Endometriosis Care: Systematic Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1