Yannik Terhorst, Eva-Maria Messner, Kennedy Opoku Asare, Christian Montag, Christopher Kannen, Harald Baumeister
{"title":"Investigating Smartphone-Based Sensing Features for Depression Severity Prediction: Observation Study.","authors":"Yannik Terhorst, Eva-Maria Messner, Kennedy Opoku Asare, Christian Montag, Christopher Kannen, Harald Baumeister","doi":"10.2196/55308","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Unobtrusively collected objective sensor data from everyday devices like smartphones provide a novel paradigm to infer mental health symptoms. This process, called smart sensing, allows a fine-grained assessment of various features (eg, time spent at home based on the GPS sensor). Based on its prevalence and impact, depression is a promising target for smart sensing. However, currently, it is unclear which sensor-based features should be used in depression severity prediction and if they hold an incremental benefit over established fine-grained assessments like the ecological momentary assessment (EMA).</p><p><strong>Objective: </strong>The aim of this study was to investigate various features based on the smartphone screen, app usage, and call sensor alongside EMA to infer depression severity. Bivariate, cluster-wise, and cluster-combined analyses were conducted to determine the incremental benefit of smart sensing features compared to each other and EMA in parsimonious regression models for depression severity.</p><p><strong>Methods: </strong>In this exploratory observational study, participants were recruited from the general population. Participants needed to be 18 years of age, provide written informed consent, and own an Android-based smartphone. Sensor data and EMA were collected via the INSIGHTS app. Depression severity was assessed using the 8-item Patient Health Questionnaire. Missing data were handled by multiple imputations. Correlation analyses were conducted for bivariate associations; stepwise linear regression analyses were used to find the best prediction models for depression severity. Models were compared by adjusted R<sup>2</sup>. All analyses were pooled across the imputed datasets according to Rubin's rule.</p><p><strong>Results: </strong>A total of 107 participants were included in the study. Ages ranged from 18 to 56 (mean 22.81, SD 7.32) years, and 78% of the participants identified as female. Depression severity was subclinical on average (mean 5.82, SD 4.44; Patient Health Questionnaire score ≥10: 18.7%). Small to medium correlations were found for depression severity and EMA (eg, valence: r=-0.55, 95% CI -0.67 to -0.41), and there were small correlations with sensing features (eg, screen duration: r=0.37, 95% CI 0.20 to 0.53). EMA features could explain 35.28% (95% CI 20.73% to 49.64%) of variance and sensing features (adjusted R<sup>2</sup>=20.45%, 95% CI 7.81% to 35.59%). The best regression model contained EMA and sensing features (R<sup>2</sup>=45.15%, 95% CI 30.39% to 58.53%).</p><p><strong>Conclusions: </strong>Our findings underline the potential of smart sensing and EMA to infer depression severity as isolated paradigms and when combined. Although these could become important parts of clinical decision support systems for depression diagnostics and treatment in the future, confirmatory studies are needed before they can be applied to routine care. Furthermore, privacy, ethical, and acceptance issues need to be addressed.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e55308"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/55308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Unobtrusively collected objective sensor data from everyday devices like smartphones provide a novel paradigm to infer mental health symptoms. This process, called smart sensing, allows a fine-grained assessment of various features (eg, time spent at home based on the GPS sensor). Based on its prevalence and impact, depression is a promising target for smart sensing. However, currently, it is unclear which sensor-based features should be used in depression severity prediction and if they hold an incremental benefit over established fine-grained assessments like the ecological momentary assessment (EMA).
Objective: The aim of this study was to investigate various features based on the smartphone screen, app usage, and call sensor alongside EMA to infer depression severity. Bivariate, cluster-wise, and cluster-combined analyses were conducted to determine the incremental benefit of smart sensing features compared to each other and EMA in parsimonious regression models for depression severity.
Methods: In this exploratory observational study, participants were recruited from the general population. Participants needed to be 18 years of age, provide written informed consent, and own an Android-based smartphone. Sensor data and EMA were collected via the INSIGHTS app. Depression severity was assessed using the 8-item Patient Health Questionnaire. Missing data were handled by multiple imputations. Correlation analyses were conducted for bivariate associations; stepwise linear regression analyses were used to find the best prediction models for depression severity. Models were compared by adjusted R2. All analyses were pooled across the imputed datasets according to Rubin's rule.
Results: A total of 107 participants were included in the study. Ages ranged from 18 to 56 (mean 22.81, SD 7.32) years, and 78% of the participants identified as female. Depression severity was subclinical on average (mean 5.82, SD 4.44; Patient Health Questionnaire score ≥10: 18.7%). Small to medium correlations were found for depression severity and EMA (eg, valence: r=-0.55, 95% CI -0.67 to -0.41), and there were small correlations with sensing features (eg, screen duration: r=0.37, 95% CI 0.20 to 0.53). EMA features could explain 35.28% (95% CI 20.73% to 49.64%) of variance and sensing features (adjusted R2=20.45%, 95% CI 7.81% to 35.59%). The best regression model contained EMA and sensing features (R2=45.15%, 95% CI 30.39% to 58.53%).
Conclusions: Our findings underline the potential of smart sensing and EMA to infer depression severity as isolated paradigms and when combined. Although these could become important parts of clinical decision support systems for depression diagnostics and treatment in the future, confirmatory studies are needed before they can be applied to routine care. Furthermore, privacy, ethical, and acceptance issues need to be addressed.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.