Investigating Smartphone-Based Sensing Features for Depression Severity Prediction: Observation Study.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES Journal of Medical Internet Research Pub Date : 2025-01-30 DOI:10.2196/55308
Yannik Terhorst, Eva-Maria Messner, Kennedy Opoku Asare, Christian Montag, Christopher Kannen, Harald Baumeister
{"title":"Investigating Smartphone-Based Sensing Features for Depression Severity Prediction: Observation Study.","authors":"Yannik Terhorst, Eva-Maria Messner, Kennedy Opoku Asare, Christian Montag, Christopher Kannen, Harald Baumeister","doi":"10.2196/55308","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Unobtrusively collected objective sensor data from everyday devices like smartphones provide a novel paradigm to infer mental health symptoms. This process, called smart sensing, allows a fine-grained assessment of various features (eg, time spent at home based on the GPS sensor). Based on its prevalence and impact, depression is a promising target for smart sensing. However, currently, it is unclear which sensor-based features should be used in depression severity prediction and if they hold an incremental benefit over established fine-grained assessments like the ecological momentary assessment (EMA).</p><p><strong>Objective: </strong>The aim of this study was to investigate various features based on the smartphone screen, app usage, and call sensor alongside EMA to infer depression severity. Bivariate, cluster-wise, and cluster-combined analyses were conducted to determine the incremental benefit of smart sensing features compared to each other and EMA in parsimonious regression models for depression severity.</p><p><strong>Methods: </strong>In this exploratory observational study, participants were recruited from the general population. Participants needed to be 18 years of age, provide written informed consent, and own an Android-based smartphone. Sensor data and EMA were collected via the INSIGHTS app. Depression severity was assessed using the 8-item Patient Health Questionnaire. Missing data were handled by multiple imputations. Correlation analyses were conducted for bivariate associations; stepwise linear regression analyses were used to find the best prediction models for depression severity. Models were compared by adjusted R<sup>2</sup>. All analyses were pooled across the imputed datasets according to Rubin's rule.</p><p><strong>Results: </strong>A total of 107 participants were included in the study. Ages ranged from 18 to 56 (mean 22.81, SD 7.32) years, and 78% of the participants identified as female. Depression severity was subclinical on average (mean 5.82, SD 4.44; Patient Health Questionnaire score ≥10: 18.7%). Small to medium correlations were found for depression severity and EMA (eg, valence: r=-0.55, 95% CI -0.67 to -0.41), and there were small correlations with sensing features (eg, screen duration: r=0.37, 95% CI 0.20 to 0.53). EMA features could explain 35.28% (95% CI 20.73% to 49.64%) of variance and sensing features (adjusted R<sup>2</sup>=20.45%, 95% CI 7.81% to 35.59%). The best regression model contained EMA and sensing features (R<sup>2</sup>=45.15%, 95% CI 30.39% to 58.53%).</p><p><strong>Conclusions: </strong>Our findings underline the potential of smart sensing and EMA to infer depression severity as isolated paradigms and when combined. Although these could become important parts of clinical decision support systems for depression diagnostics and treatment in the future, confirmatory studies are needed before they can be applied to routine care. Furthermore, privacy, ethical, and acceptance issues need to be addressed.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e55308"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/55308","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Unobtrusively collected objective sensor data from everyday devices like smartphones provide a novel paradigm to infer mental health symptoms. This process, called smart sensing, allows a fine-grained assessment of various features (eg, time spent at home based on the GPS sensor). Based on its prevalence and impact, depression is a promising target for smart sensing. However, currently, it is unclear which sensor-based features should be used in depression severity prediction and if they hold an incremental benefit over established fine-grained assessments like the ecological momentary assessment (EMA).

Objective: The aim of this study was to investigate various features based on the smartphone screen, app usage, and call sensor alongside EMA to infer depression severity. Bivariate, cluster-wise, and cluster-combined analyses were conducted to determine the incremental benefit of smart sensing features compared to each other and EMA in parsimonious regression models for depression severity.

Methods: In this exploratory observational study, participants were recruited from the general population. Participants needed to be 18 years of age, provide written informed consent, and own an Android-based smartphone. Sensor data and EMA were collected via the INSIGHTS app. Depression severity was assessed using the 8-item Patient Health Questionnaire. Missing data were handled by multiple imputations. Correlation analyses were conducted for bivariate associations; stepwise linear regression analyses were used to find the best prediction models for depression severity. Models were compared by adjusted R2. All analyses were pooled across the imputed datasets according to Rubin's rule.

Results: A total of 107 participants were included in the study. Ages ranged from 18 to 56 (mean 22.81, SD 7.32) years, and 78% of the participants identified as female. Depression severity was subclinical on average (mean 5.82, SD 4.44; Patient Health Questionnaire score ≥10: 18.7%). Small to medium correlations were found for depression severity and EMA (eg, valence: r=-0.55, 95% CI -0.67 to -0.41), and there were small correlations with sensing features (eg, screen duration: r=0.37, 95% CI 0.20 to 0.53). EMA features could explain 35.28% (95% CI 20.73% to 49.64%) of variance and sensing features (adjusted R2=20.45%, 95% CI 7.81% to 35.59%). The best regression model contained EMA and sensing features (R2=45.15%, 95% CI 30.39% to 58.53%).

Conclusions: Our findings underline the potential of smart sensing and EMA to infer depression severity as isolated paradigms and when combined. Although these could become important parts of clinical decision support systems for depression diagnostics and treatment in the future, confirmatory studies are needed before they can be applied to routine care. Furthermore, privacy, ethical, and acceptance issues need to be addressed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
期刊最新文献
Subtyping Social Determinants of Health in the "All of Us" Program: Network Analysis and Visualization Study. Understanding Citizens' Response to Social Activities on Twitter in US Metropolises During the COVID-19 Recovery Phase Using a Fine-Tuned Large Language Model: Application of AI. Health IT Implementation and the Impact of the COVID-19 Pandemic on Clinician-IT Dynamics: Qualitative Study. Interventions for Digital Addiction: Umbrella Review of Meta-Analyses. Smart Pharmaceutical Monitoring System With Personalized Medication Schedules and Self-Management Programs for Patients With Diabetes: Development and Evaluation Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1